
StegoType: Surface Typing from Egocentric Cameras 
Mark Richardson Fadi Botros Yangyang Shi 
Meta Reality Labs Meta Reality Labs Meta Reality Labs 
Seattle, WA, USA Redmond, WA, USA Redmond, WA, USA 
echo@meta.com fadibotros@meta.com yyshi@meta.com 

Bradford Snow Pinhao Guo Linguang Zhang 
Meta Reality Labs Meta Reality Labs Meta Reality Labs 
Redmond, WA, USA Redmond, WA, USA Redmond, WA, USA 
brsnow@meta.com pinhaoguo1@meta.com linguang@meta.com 

Jingming Dong Keith Vertanen∗ Shugao Ma 
Meta Reality Labs Michigan Technological University Meta Reality Labs 
Redmond, WA, USA Houghton, MI, USA Redmond, WA, USA 
djingming@meta.com keith@keithv.com shugao@meta.com 

Robert Wang 
Meta Reality Labs 
Redmond, WA, USA 
rywang@meta.com 

ABSTRACT 
Text input is a critical component of any general purpose comput- text input; hand-tracking; mixed reality, augmented reality; virtual 
ing system, yet efcient and natural text input remains a challenge reality 
in AR and VR. Headset based hand-tracking has recently become ACM Reference Format: 
pervasive among consumer VR devices and afords the opportu- Mark Richardson, Fadi Botros, Yangyang Shi, Bradford Snow, Pinhao Guo, 
nity to enable touch typing on virtual keyboards. We present an Linguang Zhang, Jingming Dong, Keith Vertanen, Shugao Ma, and Robert 
approach for decoding touch typing on uninstrumented fat sur- Wang. 2024. StegoType: Surface Typing from Egocentric Cameras. In The 
faces using only egocentric camera-based hand-tracking as input. 37th Annual ACM Symposium on User Interface Software and Technology 

While egocentric hand-tracking accuracy is limited by issues like (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, New York, NY, 
USA, 14 pages. https://doi.org/10.1145/3654777.3676343 self occlusion and image fdelity, we show that a sufciently diverse 

training set of hand motions paired with typed text can enable a 
deep learning model to extract signal from this noisy input. Further-
more, by carefully designing a closed-loop data collection process, 
we can train an end-to-end text decoder that accounts for natural 
sloppy typing on virtual keyboards. We evaluate our work with 
a user study (n=18) showing a mean online throughput of 42.4 
WPM with an uncorrected error rate (UER) of 7% with our method 
compared to a physical keyboard baseline of 74.5 WPM at 0.8% 
UER, showing progress towards unlocking productivity and high 
throughput use cases in AR/VR. 

CCS CONCEPTS 
• Human-centered computing → Text input; Virtual reality; • 
Computing methodologies → Natural language generation. 
∗Keith Vertanen contributed the statistical decoder experiments in Section 6.1: Study 5. 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0628-8/24/10 
https://doi.org/10.1145/3654777.3676343 

KEYWORDS 

Figure 1: A person in mixed reality performs a transcription 
task on a virtual keyboard superimposed on a fat surface, 
with StegoType mapping hand motion into typed keys. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3654777.3676343
https://doi.org/10.1145/3654777.3676343
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3654777.3676343&domain=pdf&date_stamp=2024-10-11


UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

1 INTRODUCTION 
Hand-tracking has gained popularity as a low-friction mode of 
interaction in AR and VR, alleviating the need for controllers to 
enable human computer interaction (HCI) that mirrors how we 
interact in the physical world. Despite this evolution, natural text 
input remains a challenge. While egocentric headset based hand-
tracking is sufcient for coarse heuristic interactions and socially 
acceptable self-presence in VR, its accuracy is limited due to issues 
like self occlusion and image fdelity. Existing VR solutions for 
hand-based text entry including raycast keyboards or poke-based 
mid-air keyboards primarily utilize thumb and index fngers. This is 
likely due to the relative ease for which these digits can be tracked 
from an egocentric perspective. However, the throughput aforded 
by thumb or index fnger based methods is limited [9, 11]. 

Other technologies for text entry exist but sufer their own draw-
backs. Speech recognition enables high throughput input but may 
not be socially acceptable in public spaces and lacks efective mech-
anisms for correction, thus limiting applicable use cases. Gesture 
typing on virtual keyboards can increase throughput with only 
thumb or index-fnger tracking but is limited to dictionary word 
decoding, and because mistakes occur at a word granularity, cor-
rections are costly [11, 22]. 

Multi-fnger typists can achieve higher words per minute (WPM) 
on physical keyboards than two fnger typists [7]. Enabling multi-
fnger surface typing in AR/VR could unlock higher throughput 
text entry [9], but in practice this is challenging because of limited 
hand-tracking accuracy. 

This work demonstrates that multi-fnger touch typing on fat 
surfaces can be achieved on a consumer VR headset, relying only 
on egocentric hand-tracking as input. Following the direction of 
Richardson et al. [34], we also train an end-to-end motion model 
which maps hand motion onto typed text. However, we replace the 
OptiTrack motion capture based hand-tracking used by Richardson 
et al. with egocentric camera based bare hand-tracking. We show 
that with a sufciently diverse training dataset of hand motions 
paired with typed text, we can train a deep learning model that 
extracts signal from noisy egocentric hand-tracking and decodes 
touch-typing on a virtual keyboard. 

The contributions of this work are as follows: 

(1) A real-time system integrating imperfect (egocentric and 
markerless) hand-tracking with a downstream text decoding 
model on a compute constrained device. 

(2) A scalable closed-loop data collection setup capturing natural 
typing behaviors including corrections and mistakes as they 
naturally occur on virtual keyboards 

(3) A modern expressive machine learning model for decoding 
surface typing with generalization across typists. Notably, 
we tailor a speech-inspired architecture to our domain by 
modeling left and right hand input and explicitly addressing 
key emission latency. 

2 RELATED WORK 
2.0.1 Text decoding on virtual keyboards. Soft keyboards are the 
dominant form of text input for mobile phones and tablets. Good-
man et al. [14] introduced a text decoding method that combines 

key touch distributions (modeled as bi-variate Gaussians) and lan-
guage models (modeled with n-grams). Yan et al. [28] extend the 
modeling of the key touch distribution with rotational dual Gaus-
sians. Vertanen et al. extended soft keyboard text decoding to use 
sentence-level decoding [43] and watch-sized surfaces [42]. 

Grady et al. [16] show that a single camera can be used to detect 
touch down events and locations on a surface. Grady et al. [15] 
extend this work to diverse surfaces and create a soft keyboard 
prototype that achieves 26 WPM. In our work, we do not model in-
dividual touch events as an intermediate representation, but rather 
decode the motion of the fngers directly. 

2.0.2 AR/VR text entry. Mid-air typing has been a popular ap-
proach for spatial computing in AR/VR and imposes the minimal 
constraints on the user. ATK [46] uses a LeapMotion sensor to 
decode 10 fnger tapping in mid-air. Dudley and colleagues have 
explored both tapping in mid-air with the VISAR keyboard [10] and 
gesture typing [11]. Yi et al. [45] apply probabilistic touch detection 
to improve the accuracy of mid-air tapping. Shen et al. [36] apply 
3D trajectory decoding to mid-air gesture typing. While mid-air 
text input ofers ultimate convenience for spatial computing, it can 
be more fatiguing and slower than typing on a surface [6]. 

Recent work that leverages the comfort of a surface require addi-
tional instrumentation, e.g., from touchpads or inertial sensors on 
the fngers or the wrist. TapGazer [20] combines touchpad-based 
tap detection with gaze. TypeAnywhere [47] uses accelerometers 
on each fnger to accurately decode fnger taps into text at average 
speeds of 71 WPM. TapID [31] combine two wristbands (with in-
ertial sensors) and egocentric hand-tracking to facilitate tap event 
identifcation, tap fnger identifcation and ultimately, typing. Tap-
Type [40] extends TapID by using a more advanced Bayesian neu-
ral network to decode text, discharging the reliance on egocentric 
hand-tracking and achieving average speeds of 19 WPM. Both Ty-
peAnywhere and TapType rely on language models to decode the 
ambiguous input. Our work pushes the frontier of using egocentric 
hand-tracking alone to facilitate accurate touch typing, notably 
even without a language model. 

We are inspired by the work of Richardson et al. [34] that de-
coded touch typing on a surface from vision-based signals. How-
ever, Richardson et al. relied on near-perfect hand-tracking from a 
multi-camera motion capture system and marker gloves. Our work 
instead aims to use noisier egocentric hand-tracking without the 
use of special gloves. 

2.0.3 Image/video based action recognition. Our approach of recog-
nizing key presses from cameras is an instance of video action recog-
nition, which has been typically addressed with 3D-CNNs [5, 12] 
and transformers [2, 4]. Pose-based action recognition extends this 
work to explicit consideration of skeletal full-body [8, 26] or hand 
pose [35]. Our work ultimately combines both pose information 
(i.e., fnger coordinates) and image encodings (latent embeddings) 
as input for supervision. 

2.0.4 Automatic speech recognition. We follow recent work on end-
to-end automatic speech recognition (ASR) [23] by adopting the 
Connectionist Temporal Classifcation (CTC) loss [18, 32] and the 
Emformer architecture [37], a memory efcient transformer. Simi-
lar to streaming ASR systems, our streaming text decoder can be 



StegoType: Surface Typing from Egocentric Cameras UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

extended with a language model using the popular RNN-transducer 
framework [17, 24]. 

3 APPROACH 
We aim to enable touch typing in VR to capitalize on a user’s existing 
physical typing skills, eschewing the need for other peripherals 
and using only egocentric hand-tracking as input. We construct 
an environment where users don a VR headset and sit in front 
of a virtual keyboard superimposed upon a real-world physical 
surface. The headset contains a stereo pair of downward-facing 
cameras, calibrated to enable the hand-tracking methodology of 
UmeTrack [19]. Cameras frames are sampled at 30 Hz and UmeTrack 
then yields a stream of hand pose features at the same frequency. 
The regressed pose features are used to skin hand meshes which 
the user then sees as their own hands, thus enabling placing their 
hands on the virtual keyboard to type (Figure 1). 

The hand poses estimated from egocentric hand-tracking have 
limited accuracy, often due to fundamental issues with the camera 
locations. In typing poses the fngertips and distal joints are often 
self-occluded, making the pose estimation problem ambiguous (Fig-
ure 7). This especially afects ring and pinky fngers which typically 
only have proximal phalanges visible. Rather than treating typing 
as modeling a set of touch contacts with keys, which would be 
directly compromised by hand-tracking errors of the distal joints, 
we instead opt for a modeling approach that maps hand motion 
onto typed text. 

4 TRAINING DATA 
Training and evaluating a model to map hand motion onto key-
presses necessitates a training corpus of hand motion labeled with 
key-presses. We construct a data collection lab study that mim-
ics our desired online VR experience while allowing us to collect 
ground-truth information about the key presses that correspond to 
given hand motion. 

During data collection, participants wear a head-mounted stereo 
pair of downward pointing cameras that see the active typing area 
2. In front of the participant is a printed paper keyboard with an 
industry standard 19 mm key pitch afxed to a surface (similar 
to what would be projected in VR). Both the head-mounted cam-
eras and the surface keyboard are tracked using a marker based 
OptiTrack motion capture setup. 

The paper keyboard was afxed on top of a pair of Sensel pressure 
sensitive touchpads mounted inside a milled aluminum board to 
achieve a large fat surface with a touch-sensitive region under the 
keys we are modeling (Figure 3). 

4.1 Open-loop data collection 
In front of the participant is a monitor that displays short text 
prompts to be transcribed on the paper keyboard. Following the 
direction of [34], we initially experimented with an open-loop setup 
where participants would type without any feedback on the paper 
keyboard and then self-declare whether they felt they performed 
the transcription correctly. We recorded data from researchers on 
our team yielding a dataset of hand motion paired with the text we 
intended to produce. 

Figure 2: A data collection setup with a typist sporting a head-
mounted stereo camera rig. The user is typing on a touchpad 
keyboard in front of a monitor that displays the transcription 
prompts and their typed text. 

Figure 3: (Top) The output of the touchpads composed into a 
full-size keyboard layout which can turn contacts into key-
presses. (Bottom) Two Sensel boards embedded into a milled 
aluminum plate creating a large fat surface with active sens-
ing area underneath a printed keyboard layout. Aruco tags 
are used to verify the motion capture surface tracking align-
ment. 

The scale of data recorded from researchers alone, while suf-
cient for training user-specifc models achieving an average of 6.1% 
CER, was insufcient to train a user-generic model (K-folds cross 
validation measured cross-user CER at 24.6%). Presuming training 
data diversity to be the primary problem we sought increased data 
scale by recruiting data collection participants from the public, but 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

then found that these participants made frequent undeclared tran-
scription errors causing mismatched hand-motion/intended text. 
Even as we scaled up to 40 users in our training set, cross-user 
performance still plateaued around 18.2% CER. 

We analyzed participants’ typos and categorized them into two 
types of errors: 

(1) Slop errors: Slop errors result from a user over or under-
reaching for intended keys, leading to a neighboring key 
being hit. This is especially common on soft keyboards with-
out the haptics of key-edges to help maintain hand-keyboard 
alignment. In these cases a user intended to hit a diferent 
key than the one they physically hit. 

(2) Compliance errors: Any error which is not a slop error is 
a compliance error. This includes not making contact when 
trying to hit a key, hitting a spurious key with another fnger, 
or making a transcription mistake such as reading and then 
typing the wrong word. We posit that when a compliance 
error is made that users should have less expectation for the 
system to deviate from what they physically did. 

Our objective is to train a model to produce the keys a typist 
intends to be produced. To this end, slop errors should be included 
in data collection labeled according to the key a user meant to 
hit. However, compliance errors are not necessarily aligned with 
this objective. For example, if a participant misread a word from a 
prompt they would not expect that word to be produced given their 
typing motion. In a post-hoc analysis of data collected in an open 
loop setting, we found that participants made compliance errors in 
over 40% of transcriptions. These had either the wrong number of 
contacts for the number of characters in the prompt or they had a 
touchpad contact more than 30 mm away from the key that should 
have been hit. 

Another weakness of open-loop is that it does not naturally ex-
ercise the backspace key. To obtain training labels with backspace, 
we need to prompt the user to use backspace at seemingly ran-
dom points within a prompt. Transcribing text with backspaces 
randomly interspliced is a much more challenging task than tran-
scribing natural language, closer in complexity to transcribing a 
password or other random string which further exacerbates com-
pliance errors. Additionally prompted backspaces often result in 
motion that is diferent from natural backspaces from reacting to 
an error, which introduces a domain gap between training and live 
testing. 

4.2 Closed-loop data collection 
To address both compliance errors and unnatural backspace motion 
we pivoted to an interactive closed-loop data collection setup simi-
lar to using a real virtual keyboard. We built an online keyboard 
decoder using the pair of Sensel touchpads underneath a paper 
keyboard layout. The display showed both the prompt and live 
feedback about the user’s transcription. In this setup the prompt 
was only used to guide users, but the sequence of keys a partici-
pant physically touched on this touchpad keyboard were recorded 
as the ground truth labels in the resulting dataset. Participants 
can make and see their own mistakes and naturally correct them 
with backspace, yielding a dataset with labeled realistic motions of 
backspace key presses. 

We empirically tuned two thresholds on the Sensel touchpad 
keyboard, retaining contacts over 15 g of force and more than 3 mm 
in contact width, so that nearly any fnger-touch on the touchpad 
would produce a key-event. These threshold exists to eliminate false 
positive events caused by sensor noise and artifacts. For example, 
because we place a paper keyboard on top of the touchpad for visual 
reference, this afxed sheet of paper can cause spurious low-force 
events which we flter out in this way. Because the force threshold 
is sufciently low, typists can typically type with whatever force 
they fnd comfortable and non fatiguing, but at the expense of not 
being able to rest their fngers during data collection. 

This setup resolves the issue of compliance errors, but it also 
inadvertently removes slop errors. If a user over or under-reaches 
for a key, our touchpad keyboard would produce labels according 
to the keys they physically touched instead of those they intended 
to touch. Without representation of slop errors, our model cannot 
learn to read past them and will be limited to the geometric accuracy 
of users’ behavior. 

4.3 Closed-loop intent data collection 
In data collection we have access to a privileged piece of infor-
mation: the transcription prompt. We generally assume users are 
trying to type the prompt, which can then be leveraged to bias 
our touchpad keyboard. Similar to Dudley et al. [9], we develop 
a prompt-based oracle that biases the decoded keys to match the 
prompt. For instance, when a prompt frst appears, we bias the 
key corresponding to the frst character in this prompt, infating 
the key bounding box by 13 mm on each side (Figure 4). If the 
user physically touches inside this bounding box (which includes 
part of each physically neighboring key) we record an intent label 
corresponding to the key biased by the oracle. 

In our apparatus design we chose the 13 mm key bias size empir-
ically. Our researchers underwent pilot data collection and found 
this bias captured all intentional key-presses without us having to 
consider fnger placement accuracy. Evaluating all of the (non-pilot) 
data subsequently captured with this apparatus, 99% of key-presses 
are within an 8.5 mm infated bounding box indicating that a 13 mm 
infation is aggressive. The data produced by this apparatus thus 
refects an extreme where users are being as sloppy as they want, 
and our ofine analysis thus represents our ability to cope with 
that extreme. 

Users make mistakes, so they may hit outside of this biased 
key bounding box resulting in a key that no longer matches the 
prompt. In this case we know neither the key they intended to 
hit nor which key should come next. The oracle is said to be “of-
track” and requires the user backspace until the transcription again 
matches some prefx of the prompt before the oracle key biasing 
is re-enabled. When the oracle is of-track, the backspace key is 
exclusively biased (Figure 4). Because intent labels can only be 
generated when the oracle is on-track, and our goal is to collect 
more intent labels than typo labels, we played an audio buzzer 
sound for any press that was of-track. 

Overall, our closed-loop intent data collection efectively lever-
ages compliance errors, i.e., mistakes, to collect natural backspace 
key presses, while mapping slop errors to their intended key press 
for providing ground truth labels. 



StegoType: Surface Typing from Egocentric Cameras UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

Prompt:

Transcription work:

THE QUICK BROWN FOX

THE QUAC<<

      ICK BDWN<<<

           ROWN FOX

Final transcription: THE QUICK BROWN FOX

Oracle     on-track      off-track

Caps Lock

Shift Shift

%
5

^
6

&
7

*
8

(
9

)
0

$
4

#
3

@
2

!
1

~
`

Caps Lock

Shift Shift

%
5

^
6

&
7

*
8

(
9

)
0

$
4

#
3

@
2

!
1

~
`

Caps Lock

Shift Shift

%
5

^
6

&
7

*
8

(
9

)
0

$
4

#
3

@
2

!
1

~
`

Caps Lock

Shift Shift

%
5

^
6

&
7

*
8

(
9

)
0

$
4

#
3

@
2

!
1

~
`

Oracle off-track  (typo state)

Oracle on-track  (typed text = prompt prefix)

Figure 4: (Top) An oracle with knowledge of a transcription 
prompt biases the key corresponding to the expected next 
character to be typed. (Bottom) When a typo occurs, the 
backspace key is biased until the transcription is deleted 
back to an error-free prefx of the prompt. 

4.4 Participant instruction 
We recruited typists to participate in data collection where each 
participant performed transcription over a 90 minute session. The 
session was broken up into 5 minute blocks separated by 1 minute 
breaks, with additional breaks as needed. Each block consisted of 
prompts drawn from a specifc corpus, sometimes with additional 
verbal guidance, with the participant completing as many prompts 
as time allowed. The blocks were structured as follows: 

(1) Pangrams (1 block): Phrases of English words strung together 
so each prompt contains every letter of the alphabet, e.g. “the 
quick brown fox jumps over the lazy dog” 

(2) Random repeats (2 blocks): Prompts containing either one 
or two random keys separated by a space. Each random key 
was repeated a random number of times, e.g. “LLL ;;” 

(3) DailyDialog (6 blocks): Natural language phrases sampled 
from the DailyDialog corpus [25]. In 30% of these blocks 
participants are instructed to only type with index fngers 
and thumbs 

Figure 5: Motion model architecture. The boxes connected 
by dotted lines share the same weight. The blue boxes are 
operations which don’t have weights. 

Because this work focuses on touch typing, we screened for partici-
pants with touch typing ability. Candidates were given a 60 second 
typing test on a physical keyboard and had to sustain 45 WPM to 
be included in our data collection. 

5 MOTION MODEL 
Figure 5 illustrates the comprehensive architecture of the motion 
model, which is an adaptation of the Emformer architecture used in 
ASR to the task of bi-manual typing from hand-tracking inputs. We 
describe the input feature, the backbone model, the loss function 
and its regularization methods in the following subsections. 

5.1 Input features 
The pose features produced by UmeTrack consist of a single hand 
scale factor, 20 skeletal joint angles, a wrist transform and position, 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

feature mirror
Input features

Figure 6: The pose input features to the motion model consist 
of three vertices per fngertip measured relative to the key-
board coordinate frame. For the Siamese model architecture 
we mirror the right hand features over the keyboard midline 
to capitalize on hand motion symmetry. 

and a hand confdence score for each hand. Together these can be 
used to scale and rig a template hand mesh from which we can 
select specifc vertices of interest. The input features for our model 
consist of the two scalar hand-confdence scores along with pose 
features composed of three vertices per fngertip (Figure 6). These 
three fnger vertices sufciently represent the 6-degree of freedom 
coordinate transform of each fngertip. 

The fngertips from the hand are measured relative to a coordi-
nate frame centered on the virtual keyboard. To reduce overftting 
and false positives, we clamp features in a bounding box around 
the active keyboard such that fnger vertices outside of this box are 
replaced with a placeholder value of (0, 0, 0). 

Along with these pose features we also incorporate a latent 
feature vector extracted between the multiview fusion module and 
the temporal model inside the UmeTrack model. The temporal 
model is trained using an acceleration loss to reduce high frequency 
jitter, which results in a smooth hand motion for easier interactions 
in VR. However, fast fnger movements in surface typing often 
resemble high frequency jitter and are inadvertently smoothed by 
the temporal model, leading to a loss of information. Moreover, 
hand pose alone would not capture valuable image information 
such as hand-surface shadows from contact. We therefore rely on 
a latent feature vector to compensate for pose. The original latent 
feature vector has dimensionality of 960, which is infeasibly large 
for training long sequences. We therefore train a fully connected 
layer to project the feature to 128. The fully connected layer is 
trained using a loss function that enforces the pairwise feature 
distances to be the same before and after the dimension reduction: 

1 � � ∑ ∑ 
= (� (�� , � � ) − � (�� , �� ))2 (1)L��������� 

� 2 
�=0 �=0 

where � is the batch size, � is the 960-D latent feature, � is the 
reduced 128-D latent feature, and � (.) denotes the �2 distance. We 
also tried using an autoencoder to perform dimension reduction 
but found its performance to be slightly worse. The reduced latent 

feature undergoes a linear projection layer followed by layer nor-
malization, as depicted in Figure 5. The output is then concatenated 
with the pose features, serving as the input for the backbone model. 
The roles of the linear projection layer and layer normalization are 
crucial in maintaining model stability during quantization. 

5.2 Backbone model 
Capitalizing on motion symmetry of the left and right hands, we 
apply a “Siamese” style architecture across the hands. Specifcally, 
we apply two separated models with shared weights to the left and 
mirrored-right hand features as shown in Figure 6, then concatenate 
the output embeddings to be fed into a fnal linear projection and 
softmax head to produce our fnal distribution. In Figure 5, the 
boxes connected by the dotted lines are the identical components 
with the same learnable weights. 

The temporal nature of hand motion lends itself to modeling by 
sequence neural networks. We apply a transformer based motion 
model to a 30 Hz stream of hand pose features, where for every 
frame of hand pose we predict a corresponding categorical distri-
bution over the set of possible keys, with an additional label for the 
common case of no key being pressed. 

A keyboard should produce keys as they are hit, which neces-
sitates the motion model to operate in a streaming fashion. In the 
backbone model, the Emformer [37, 38] layer, a variant of trans-
former which enables efcient incremental self attention as new 
frames of input data become available. Our backbone model used 
8 Emformer layers. Each Emformer layer uses a macaron struc-
ture [27] with a masked attention window of left context size 40, 
a convolutional kernel size of 7, and 256 channels per layer. This 
model has a total of 12 million parameters with an efective tempo-
ral receptive feld of 12.3 seconds. 

5.3 Model Training 
Our training dataset consists of 268 K transcriptions recorded from 
606 typists. We train models for 48 epochs using a batch size of 
64 where each item in the batch consists of a variable (depend-
ing on how long the transcription took the participant) number 
of frames of hand features, along with a training label containing 
the sequence of keystrokes produced by the touchpad keyboard 
during data collection. The touchpad keyboard produces keypresses 
with known timestamps which could enable supervising with a 
frame-wise cross entropy loss, but we opt to instead use the Con-
nectionist Temporal Classifcation (CTC) loss function [18] which 
allows the model to learn the optimal alignment from the data. For 
slow or subtle keypresses the model benefts from seeing more 
follow through motion, and using learned alignments with CTC 
allows the model to vary its latency as needed. By default, however, 
we fnd that CTC trained models tend to sufer from high emission 
latency in general. 

People can perceive contact latency as small as 20ms [21] and 
many consumer USB keyboards operate around this latency range 
[44]. In order to minimize the latency of our decoding strategy while 
also retaining the advantages of variable latency we introduce a 
regularization term L������� in training that minimizes the KL 
divergence between the model output distribution P� and a target 
distribution set to the model output one frame later, P�+1 (with 



StegoType: Surface Typing from Egocentric Cameras UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

a temperature hyperparameter � applied to both the source and 
target softmax distributions): � �∑ �� (�)L������� (Pt) = �� (�) log (2)

�� +1 (�)
� ∈� 

exp(�� (�)/�)
�� (�) = Í (3) 

� ∈� exp(�� (�)/�) 
L = L��� + ��−��� ∗ L������� (4) 

If the model originally predicted a key-press at time �0 then 
this regularizer encourages the model to instead predict at �0 − 1, 
efectively pushing predictions to occur earlier in time. We use a 
weighted combination of this regularizer with the original CTC 
loss where the loss weights are determined empirically. 

5.4 Label dependence 
The CTC loss function can sufer from the label independence 
assumption, so we adopt the approach of [33] in which softmax 
heads are attached to select intermediate layers in the model and 
are supervised with the same loss function that supervises the 
fnal model output. Intermediate layers in the model then predict 
labels which are linearly projected back to the dimensionality of the 
model trunk and fed into the subsequent layer (Figure 5), efectively 
enabling later layers in the network to leverage label predictions 
from previous time steps as context. 

The total loss of the entire model is calculated as a weighted 
combination of the intermediate CTC losses and the fnal output 
CTC loss, as expressed in the following equation:∑ 

L��� = L� + �� ∗ L� 
� 

Here, L� represents the loss derived from the fnal Emformer layer 
output, while L� denotes the loss from the intermediate output. In 
this study, the intermediate outputs from the 3rd and 6th Emformer 
layers were utilized. The weight �� of the intermediate loss was 
0.3. 

6 EVALUATION 
We segment our evaluations into ofine and online. Since our 
method predicts individual keys as they are hit, we focus our evalu-
ation on character level error. In ofine evaluation we use character 
error rate, and in online evaluation we report uncorrected character 
error rate and WPM. 

6.1 Ofline evaluation 
We stand up two ofine evaluation datasets collected using the same 
rig as our training data. The frst dataset includes 1448 transcrip-
tions from 11 participants who are not represented in our training 
dataset. Prompts are drawn from the MacKenzie and Soukoref 
phrase corpus [30], giving coverage of natural language typing. 
The second dataset includes 223 transcriptions from 5 participants 
with prompts of random n-grams, exercising non-language typing. 

As described in Section 4, ground truth key-press labels can ei-
ther correspond to typo or non-typo (intent) events. For typo labels 
we cannot infer which key the user meant to hit (if any), therefore 
measuring our model’s prediction accuracy on these events is not 

related to our objective of predicting intended key-presses. In ad-
dition to standard character error rate (CER) we also calculate a 
metric, intent character error rate (I-CER) which captures the error 
rate specifc to the intent subset of events. A detailed derivation of 
I-CER is provided in the Appendix. 

Study 1: Model architecture Richardson et al. [34] applied 
a temporal convolutional network (TCN) based on the architec-
ture [3] to map marker based hand-tracking onto typed text. How-
ever, in addition to requiring near perfect hand-tracking, Richardson 
trained trained a diferent model for each typist in the evaluation 
set–cross-user generalization remained unaddressed. We compare 
this TCN architecture to the Emformer based architecture presented 
in this work. For fairness we construct a TCN with a similar param-
eter count and receptive feld to our Emformer architecture models. 
Our TCN implementation has 8 layers with a convolution kernel 
size of 48, a dilation factor of 1, and 768 channels per layer. All 
Emformer variants tested use a trunk with 8 layers, a self-attention 
window of 40, a convolutional kernel size of 7, and 256 channels 
per layer. The results of these comparisons are summarized in table 
1 which shows that the Siamese Emformer outperforms all other ar-
chitectures on accuracy. The Emformer’s state-keeping allows it to 
save compute when running incrementally so that, even with a sim-
ilar parameter count, the number of operations required per input 
frame is an order of magnitude lower than the TCN baseline, allow-
ing Emformer models to run at 30 Hz on a compute constrained 
Quest 3 headset. 

Study 2: Latency regularization The impact of latency regu-
larization as described in Section 5 is measured by comparing the 
timesteps at which the model emits predictions to the ground truth 
times for the corresponding labels as determined by the touchpad 
during data collection. Corresponding model predictions and labels 
is a nontrivial task since the CTC-trained model is allowed variable 
emission latency so there is an inconsistent time ofset between the 
two streams. We take an approach inspired by forced alignment 
which establishes correspondences taken from the alignments that 
yield the minimum edit distance. A full derivation of this approach 
is presented in Appendix B. 

This metric is used to evaluate a set of models where the latency 
loss weight hyperparameter ��−��� is varied, with results summa-
rized in Table 1. We see an inverse correlation between accuracy 
and latency, and for our user study we select the label-dependent 
Siamese Emformer model with a latency regularization weight of 
0.5 with reasonable accuracy and an average latency of 27 ms (0.81 
frames at 30 Hz), in the same regime as physical keyboards. 

Study 3: Latent features By training two identical architecture 
models, one which includes latent feature inputs and one which 
only operates on pose-based features, we fnd that latent features 
reduce overall intent error rate by a relative 6% while also decreas-
ing latency by 18ms on the MacKenzie and Soukoref evaluation 
set (Table 2). By extracting samples where the latent-feature model 
signifcantly outperforms the pose-only model we can gain insight 
into the types of cases where latent features ofer beneft. A canon-
ical example is shown in Figure 7 where a typist’s index fnger is 
partially occluded by their thumb as they strike a key. The pose 
estimated by UmeTrack curls the occluded fngertip more than 
it should which places the estimated fngertip one key lower on 
the keyboard. The authors of UmeTrack [19] suggest the temporal 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

Model Params Incremental Receptive feld L-reg Latency CER I-CER 
ops (frames) weight (frames) 

TCN 10.1 M 348 M 377 0.5 0.82 12.01% 10.27% 
Emformer 12.3 M 37 M 369 0.5 0.97 8.28% 6.32% 
Siamese Emformer 12.3 M 37 M 369 0.5 0.79 7.85% 5.88% 
Label-Dependent Siamese Emformer 12.4 M 38 M 369 1.0 0.37 7.12% 5.10% 
Label-Dependent Siamese Emformer 12.4 M 38 M 369 0.5 0.81 7.02% 5.03% 
Label-Dependent Siamese Emformer 12.4 M 38 M 369 0.1 3.24 6.44% 4.40% 
Label-Dependent Siamese Emformer 12.4 M 38 M 369 0.0 6.28 6.31% 4.20% 

Table 1: A comparison of model architectures and supervision strategies. The label-dependent Siamese Emformer outperforms 
all other models, while varying latency regularization weighting trades of latency for accuracy. We use a latency regularization 
weight of 0.5 (in bold) for our online studies. Despite similar parameter counts, the Emformer architecture requires much less 
compute than the TCN baseline when operating incrementally. 

Latent features CER 

no NOIN US N THE PATIOL 4.5% 
yes JOIN US ONO THE PATIO 13.6% 

Figure 7: A typist hits ‘J’ with their right index fnger which 
is partially occluded by their right thumb. Under occlusion, 
UmeTrack (blue) reasons that the digit is more curled than 
the ground truth pose (yellow) indicates. Without latent fea-
tures the model predicts that ‘N’ was struck, but with latent 
features the motion model performs its own occlusion rea-
soning and correctly predicts ‘J’. 

module is responsible for occlusion reasoning, but the occlusion 
reasoning that works for free-space hand motion does not necessar-
ily work when other objects (e.g. the table) can resist hand motion. 
By integrating UmeTrack’s latent features our model is efectively 
able to learn its own task-specifc occlusion reasoning policy. 

Study 4: Oracle-based intent labels To measure the impact of 
our oracle-based data collection with slop errors labeled with user 
intent, we construct an evaluation that compares our oracle-based 
intent labels and physically-touched key labels. We transform our 
original dataset by replaying the 2D touchpad contacts through 
an ofine decoder which simply assigns the label of the physically 
touched key for each contact. We train and evaluate models on 
our original and physical touch datasets to measure the impact 
of intent-training and intent-evaluation (See Table 3). The results 

Latent features CER I-CER latency 
(frames) 

no 7.36% 5.35% 1.36 
yes 7.02% 5.03% 0.81 

Table 2: Two label-dependent Siamese Emformer models are 
trained, one with UmeTrack latent features and one without. 
Latent features decrease both error rate and emission latency 
on an evaluation set. 

Training labels Evaluation labels 
Physical (CER) Intent (CER) 

Physical 18.41% 21.77% 
Intent 25.06% 7.02% 

Table 3: The character error rate (CER) of label-dependent 
Siamese Emformer models trained and evaluated on either 
physical or intent-labeled hand motion data. 

show that models struggle to decode the keys that users physically 
touch, even if the model is trained on physical touch data in the 
frst place. 

Study 5: Touchpad baselines 
In our fnal study, we directly compare our motion model against 

touch-based text decoding (e.g. an iPad). This is possible because 
our data collection simultaneously recorded both 2D touch contacts 
and 3D fnger motion. While our motion model does not use an 
explicit language model, we explored how a language model could 
infuence typing accuracy (both for natural language and for non-
language text). 

For the purposes of this analysis, we focus on a subset of the 
data in our evaluation datasets. Similar to our other evaluations 
we ignore non-intent/typo labels where the oracle was of track, 
but we additionally ignore intent-labels that a user later deleted. 
We also removed key-presses for non-character generating keys 
(e.g. backspace and enter). This was necessary as our touchpad 
decoder’s language model was trained on sentences without any 



StegoType: Surface Typing from Egocentric Cameras UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

key-presses associated with performing corrections or other actions 
while creating the sentences. The retained key-presses then all cor-
respond to a key present in the fnal text. We removed any sentence 
where the participant’s fnal text did not match the target text. We 
note that this subset of data is artifcially clean typing data because, 
by design, we selected data without spurious or missing contact 
events. However, the data still contains spatial noise introduced by 
the contact slop licensed by the oracle in our data collector. 

Our natural language evaluation test set was drawn from the 
MacKenzie and Soukoref phrase set [30] (1,445 sentences with 43 K 
key-presses). Our non-language text evaluation test set consisted 
of random letter sequences of A–Z (239 sentences with 1,676 key-
presses). As shown in Table 4 (row 1), approximately 18% of key-
presses in both sets constituted slop errors (i.e. the key closest to 
the touchpad contact was not the target key). 

The touchpad decoder used a 2D Gaussian per key with the 
means and diagonal covariances ft to the same training corpus 
used for the motion model. Even without a language model, this 
Gaussian model corrected some of the slop errors in both evaluation 
sets. The errors in the natural language text was reduced to 14.2% 
from 17.8%, while the non-language text was reduced to 16.9% from 
18.4% (Table 4, row 2). 

We combined the likelihood from the key-specifc Gaussians with 
a character language model prior. Our 12-gram language model was 
trained using Witten-Bell smoothing on 21 B characters of text from 
various web sources. The language model had 408 M parameters. 

Our greedy decoder simulated a system that produced a key-
press as soon as a contact was made (analogous to our streaming 
motion model). This substantially reduced the error rate for the 
natural language text from 14.2% to 5.6% (Table 4, row 3). However, 
as might be expected, the language model made recognition of the 
non-language text worse, increasing it from 16.9% to 21.3%. 

Rather than a greedy character-at-a-time decoder, we could in-
stead perform a beam search and auto-correct the input after multi-
ple key-presses (e.g. after each word as is common on a touchscreen 
phone keyboard). Past work shows accuracy improves if recognition 
is postponed until after several words or even the entire sentence 
[41, 43]. Sentence decoding corrected nearly all slop errors in the 
natural language evaluation set with an uncorrected fnal error rate 
of 0.6% (Table 4, row 4). However, this further increased the error 
rate for non-language text to 28.5%. 

We evaluated a motion model on the same subsets of data (Table 
4, row 5). This model has an average emission latency of 27 ms, 
functionally comparable to character-at-a-time touchpad decoders. 
The motion model achieves an error rate of 5.2% on natural lan-
guage text compared to 5.6% from the character language model 
biased greedy touchpad decoder. On the other hand, the motion 
model yields a 16.4% error rate on non-language text compared to 
16.9% from the unbiased 2D Gaussian touchpad decoder. While in 
both cases the motion model is close in performance to touchpad 
decoding accuracy, the motion model does not need a priori knowl-
edge of whether the text being transcribed is natural language or 
non-language. Beam search decoding with auto-correction yielded 
signifcant improvements on natural text touchpad decoding and 
further exploration is warranted to see if similar improvements are 
possible for motion model decoding. 

Model Natural language 
I-CER 

Non-language 
I-CER 

Nearest 17.75% 18.39% 
Gaussian 14.23% 16.89% 
Greedy 
Beam 

5.61% 
0.62% 

21.32% 
28.54% 

Motion model 5.18% 16.36% 

Table 4: The intent character error rate (I-CER) of diferent 
touchpad based models versus our motion model. Results 
on natural English phrases and random non-language letter 
sequences. 

6.2 Online evaluation 
We conducted a user study with 18 participants to compare the 
performance of StegoType in VR with that of a traditional wired 
physical keyboard using a PC. As explained in Section 4.1, we could 
not compare against the method of Richardson et al. [34] since it 
did not achieve cross-user generalization, required to be usable for 
novel users in this study. 

6.2.1 Participants. We recruited 18 ofce professionals (11 male, 
7 female) for our study. The participants had diverse levels of typ-
ing experience and preferences. The majority of participants self-
identifed as touch typists (15), one was a hunt-and-peck typist, and 
two used a combination of both techniques. Two participants were 
left-handed while the rest were right-handed. Two participants had 
no prior experience using a VR headset while the rest had used VR 
at least once a year. 

6.2.2 Apparatus. The StegoType system was integrated with a stan-
dalone Meta Quest 3 headset. For the physical keyboard condition, 
we used a Lenovo KBBH21 wired keyboard connected to a PC. We 
built a typing test app that is compatible with both Quest 3 and PC. 
Within the Quest 3 application, users were shown a visualization of 
a full-sized keyboard, their virtual hands, and a window where the 
typing test was displayed (Figure 8). Each StegoType key-press was 
accompanied by both visual highlighting and auditory feedback. 
Neither condition used a language model or auto-correction. 

6.2.3 Procedure. Before starting the study, participants completed 
a survey about their typing preferences and previous experience 
in VR. Participants sat at a desk with a white tabletop and we 
instructed them to adjust the seat to a comfortable height. We 
asked participants to remove any rings or bracelets to minimize 
interference with hand-tracking. 

This was a within-subject experiment with two counterbalanced 
conditions: StegoType and Physical Keyboard. In the StegoType 
condition, participants initially completed two calibration steps. 
First, they held their hands in front of the headset for hand size 
calibration, which is used by the motion model. Second, they placed 
both hands on the table in order to align the virtual keyboard 
with the surface of the physical table. Using their virtual hands, 
participants then adjusted the virtual keyboard to a comfortable 
typing position by repositioning somewhere on the plane of the 
table. 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

Figure 8: Our VR user study condition in which participants 
see their virtual hands with a virtual keyboard and are tasked 
with transcribing short phrases in a typing test. 

In each condition, participants were presented with 50 randomly 
selected phrases from the MacKenzie and Soukoref phrase set [30] 
wherein 37% of the words are not represented in any of the corpora 
used to train the motion model. Each condition was broken down 
into 5 blocks that each consisted of 10 phrases. There was a 30 
second break between blocks which participants had the option 
to skip. We directed participants to type as fast and accurately as 
possible. After completing both conditions, we conducted a short 
interview to collect qualitative feedback. 

6.2.4 Metrics. To evaluate StegoType, we used two main depen-
dent measures: text entry rate and error rate. For text entry rate, 
we used the following formula [1] to compute words per minute 
(wpm): 

|� | − 1 1 
� �� = × 60 × (5)

� 5 
Where |R| is the length of the transcribed string in characters 

and T is the elapsed time in seconds. Elapsed time corresponds to 
the time diference in seconds between the frst key input that the 
user enters and when the user submits. For error rate, we measured 
both uncorrected error rate (UER) and corrected error rate (CER) 
[39]. UER corresponds to errors that remain in the transcribed 
string after the user submits. CER corresponds to errors that were 
committed but then corrected. 

To assess the learning efect across blocks, we conducted a one-
way repeated measures ANOVA for text entry rate as we found 
it was normally distributed (tested with Shapiro-Wilk). We con-
ducted Friedman tests for UER and CER as they were not normally 
distributed. 

6.2.5 Results. Quantitative performance. As shown in Table 5, par-
ticipants entered text faster at 74.8 wpm with the physical keyboard 

Condition Text entry rate UER (%) CER (%) 
(WPM) 

Physical Keyboard 74.8 (9.4) 0.8 (0.2) 3.4 (0.1) 
StegoType 42.4 (6.4) 7.0 (2.8) 9.3 (3.1) 

Table 5: The means and 95% confdence intervals of text entry 
rate, uncorrected error rates (UER) and corrected error rates 
(CER) of participants during the user study 

compared to 42.3 wpm with StegoType. Participants also made more 
errors with StegoType with an UER of 7.0% and a CER of 9.3% com-
pared to an UER of 0.8% and a CER of 3.4% using the physical 
keyboard. 

Figure 10 demonstrates entry rate change over blocks. A repeated 
measures ANOVA (RM-ANOVA) indicated a signifcant diference 
across blocks for both StegoType (�4,68 = 9.168, � < .001) and phys-
ical keyboard (�4,68 = 8.703, � < .001) conditions. For StegoType 
in particular, block 3 (46.9 wpm) was markedly faster than block 1 
(34.9 wpm). This diference was signifcant (�1,17 = 28.463, � < .001). 
From block 3 to 5, there were no signifcant diferences in entry 
rate. Friedman tests did not fnd any signifcant change in UER or 
CER in either condition across the blocks. 

Figure 9 illustrates the wide range of performances that partic-
ipants were able to achieve using StegoType relative to using a 
physical keyboard. For example, P7 was able to achieve 67% of his 
physical keyboard typing speed using StegoType with a UER of 
1.2%, while P5 achieved 49% text entry rate ratio with a UER of 
22.0%. 

Qualitative feedback. Many users expressed surprise by how well 
StegoType worked. P4 mentioned “This is really good, I’m honestly 
surprised it worked at all” and P9, “When it works, it feels magical”. 
Users also described adapting to the system in a few ways. P9 also 
mentioned, “I was initially focusing too much on my hands but then 
I realized that it works better when I don’t look down and type as 
naturally as possible.” and P11, “It took me a few phrases to get going 
but then it felt great”. P16 contrasted StegoType with the current 
mid-air Quest keyboard by stating “This is already way faster than 
the current two-fnger typing experience on Quest”. 

When asked about sources of frustration, participants mentioned 
the lack of haptic feedback as a primary cause. P17 said “I had to 
look down a lot in the beginning to align my fngers with the keys, I 
didn’t realize how much I rely on the little bumps on the f and j keys on 
a physical keyboard.” Another prevalent issue was inaccurate hand-
tracking. Five participants experienced challenges in accurately 
tapping keys with their ring and/or pinky fngers, attributing this 
difculty to inaccurate ring/pinky fnger pose specifcally. Six par-
ticipants voiced their frustration regarding correction. P11 shared 
“Correction felt very slow. I would often have to backspace and hit a 
key multiple times before I got the correct character.”. We observed the 
same behavior across the majority of participants which led to the 
high corrected error rate shown in Table 5. Given these challenges, 
six participants suggested that the inclusion of an auto-correct 
feature would have signifcantly improved their typing speed and 
accuracy. 



StegoType: Surface Typing from Egocentric Cameras UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

40 60 80 100 120
PK WPM

25

30

35

40

45

50

55

60

65

S
T 

W
P

M

P1

P2

P3

P4

P5

P6

P7
P8

P9
P10

P11

P12

P13

P14

P15

P16

P17

P18

0.25 0.50 0.75 1.00 1.25 1.50 1.75
PK UER (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

S
T 

U
E

R
 (%

)

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10
P11

P12

P13

P14

P15

P16

P17

P18

Figure 9: Scatter plots contrasting text entry rate (WPM) and accuracy (UER) of each participant using StegoType (ST) and 
Physical Keyboard (PK). 

Block 1 Block 2 Block 3 Block 4 Block 5

30

40

50

60

70

80

W
P

M

34.9

43.1
46.9

43.6 43.7

68.9

76.5 75.8 77.7 75.3

StegoType Physical Keyboard

Figure 10: Participants’ mean text entry speed over the 5 
blocks of typing in the StegoType and physical keyboard 
conditions (error bars show 95% confdence interval) 

7 DISCUSSION AND LIMITATIONS 
Our study revealed a notable diference between ofine and on-
line system accuracy suggesting a domain gap between the two 
settings. Several factors could potentially contribute to this discrep-
ancy including variation in the participant pools and scene/lighting 
diferences that can afect hand-tracking fdelity. Of notable interest 
are the behavioral diferences that arise when using StegoType in 
VR versus interacting with a touchpad keyboard in data collection. 
Findlater et al. [13] found that people type faster on touchpad key-
boards when they assume their input is accurate compared to when 
interacting with a practical touchpad keyboard, which implies that 

people’s typing motion and behavior changes depending on the 
feedback aforded by an interactive system. Our data collection is 
based on an oracle touchpad decoder, but typing behavior changes 
when interacting with StegoType. Because StegoType is trained to 
interpret hand motion, the behavior diference induced by using 
StegoType could lead to a domain gap. 

We observed subjective behavioral diferences that corroborated 
this behavioral domain gap. We saw participants rest fngers on the 
surface during our user study, but in data collection users always 
hold their hands above the surface to not accidentally trigger the 
touchpad. We also observed diferences in typing cadence. In data 
collection participants transcribe short 3-5 word phrases leading 
to a read-then-burst typing pattern, and because they are provided 
audio buzzer to minimize post-typo events (Section 4.2) participants 
do not hesitate to check their work unless they hear this audio cue. 
However, in live testing no audio correctness feedback is provided 
which leads to a slower visual feedback loop and a diferent rhythm 
of typing. 

Our oracle touchpad decoder infated biased key bounding boxes 
by 13 mm on each side, a threshold we chose empirically to capture 
most cases of slop we found in pilot testing. In interactive data 
collection the size of this bias will afect how much slop typists use 
and thus also their general typing behavior. A future study designed 
to study the impact of this and other factors could ofer valuable 
insights into the nuances of ofine versus online user interactions. 

Comparisons against touchpad decoding (Table 4) illustrated that 
motion models achieve similar performance to language-model bi-
ased touchpad decoders without an explicit language model prior. 
However, that the motion model did not signifcantly exceed touch-
pad performance on non-language typing suggests that the motion 
model may have learned its own language prior from the training 
data and also when to dynamically apply it. Adapting the motion 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Richardson et al. 

model to incorporate an explicit language model during training 
may allow it to leverage a stronger language prior than can be 
learned from the limited representation of language in our training 
set, which could help performance on natural language typing. 

8 CONCLUSION 
Text input is a cornerstone of any general purpose computing sys-
tem, and this paper works towards enabling natural and efcient 
text input in AR/VR by letting typists leverage their physical key-
board typing skills to touch type on uninstrumented fat surfaces. 
We have proposed a novel and expressive motion model that adapts 
ideas from modern end-to-end ASR (e.g., Emformers, direct pre-
diction of keys) with the domain-specifc qualities of two-handed 
typing hand motions (e.g., Siamese hand architecture, low latency 
requirements). We show that our system can be adapted to handle 
even the noise and uncertainty of egocentric markerless hand-
tracking by using latent features in addition to pose. We show that 
training such a system requires a data collection system that records 
interactive (closed-loop) typing and that accounts for both sloppy 
typing on a soft keyboard and user compliance errors. 

We have shown with an 18 person user study that typists can 
achieve 42.4 WPM while retaining an uncorrected error rate of 7%, 
compared to a physical keyboard baseline of 74.5 WPM at 0.8% UER. 
Notably, this is without the beneft of a language model. 

There remains a performance gap between ofine evaluation 
and user study results, and we hypothesize several infuential fac-
tors, but more exploration is needed to gain a full understanding. 
Our experiments showed decoding touchpad data benefted from a 
language model prior, and exploration is warranted to see if this 
beneft transfers to surface typing. 

ACKNOWLEDGMENTS 
We thank Braden Copple, Lee Zuhars, Shae Herrmann, Tamera 
Marshall, Stephanie Doring, Tifany Dumlao, Elena Shchetinina, 
Atishi Bali, Steve Miller, Matt Maas, Kaichen Sun, Matthew Prasek, 
Kevin Harris, Steve Olsen. 

REFERENCES 
[1] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2009. Analysis of text entry 

performance metrics. In Proceedings of the IEEE Toronto International Conference 
Science and Technology for Humanity. 100–105. 

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and 
Cordelia Schmid. 2021. Vivit: A video vision transformer. In Proceedings of the 
IEEE/CVF international conference on computer vision. 6836–6846. 

[3] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2018. An Empirical Evaluation of 
Generic Convolutional and Recurrent Networks for Sequence Modeling. CoRR 
abs/1803.01271 (2018). arXiv:1803.01271 http://arxiv.org/abs/1803.01271 

[4] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. 2021. Is space-time attention 
all you need for video understanding?. In ICML, Vol. 2. 4. 

[5] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a new 
model and the kinetics dataset. In proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition. 6299–6308. 

[6] Yi Fei Cheng, Tifany Luong, Andreas Rene Fender, Paul Streli, and Christian Holz. 
2022. ComforTable user interfaces: Surfaces reduce input error, time, and exertion 
for tabletop and mid-air user interfaces. In Proceedings of the IEEE International 
Symposium on Mixed and Augmented Reality. 150–159. 

[7] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018. 
Observations on Typing from 136 Million Keystrokes. In Proceedings of the 2018 
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) 
(CHI ’18). Association for Computing Machinery, New York, NY, USA, Article 
646, 12 pages. https://doi.org/10.1145/3173574.3174220 

[8] Haodong Duan, Yue Zhao, Kai Chen, Dahua Lin, and Bo Dai. 2022. Revisiting 
skeleton-based action recognition. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition. 2969–2978. 

[9] John J. Dudley, Hrvoje Benko, Daniel Wigdor, and Per Ola Kristensson. 2019. 
Performance Envelopes of Virtual Keyboard Text Input Strategies in Virtual 
Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality 
(ISMAR) (Beijing, China). 289–300. 

[10] John J. Dudley, Keith Vertanen, and Per Ola Kristensson. 2018. Fast and Precise 
Touch-Based Text Entry for Head-Mounted Augmented Reality with Variable 
Occlusion. ACM Trans. Comput.-Hum. Interact. 25, 6, Article 30 (Dec. 2018), 
40 pages. https://doi.org/10.1145/3232163 

[11] John J Dudley, Jingyao Zheng, Aakar Gupta, Hrvoje Benko, Matt Longest, Robert 
Wang, and Per Ola Kristensson. 2023. Evaluating the performance of hand-based 
probabilistic text input methods on a mid-air virtual qwerty keyboard. IEEE 
Transactions on Visualization and Computer Graphics (2023). 

[12] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. 2019. Slow-
fast networks for video recognition. In Proceedings of the IEEE/CVF international 
conference on computer vision. 6202–6211. 

[13] Leah Findlater, Jacob O. Wobbrock, and Daniel Wigdor. 2011. Typing on fat 
glass: examining ten-fnger expert typing patterns on touch surfaces. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (<conf-
loc>, <city>Vancouver</city>, <state>BC</state>, <country>Canada</country>, 
</conf-loc>) (CHI ’11). Association for Computing Machinery, New York, NY, 
USA, 2453–2462. https://doi.org/10.1145/1978942.1979301 

[14] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International 
Conference on Intelligent User Interfaces (San Francisco, California, USA) (IUI 
’02). Association for Computing Machinery, New York, NY, USA, 194–195. 
https://doi.org/10.1145/502716.502753 

[15] Patrick Grady, Jeremy A Collins, Chengcheng Tang, Christopher D Twigg, Kunal 
Aneja, James Hays, and Charles C Kemp. 2024. PressureVision++: Estimating 
Fingertip Pressure from Diverse RGB Images. In Proceedings of the IEEE/CVF 
Winter Conference on Applications of Computer Vision. 8698–8708. 

[16] Patrick Grady, Chengcheng Tang, Samarth Brahmbhatt, Christopher D. Twigg, 
Chengde Wan, James Hays, and Charles C. Kemp. 2022. PressureVision: Esti-
mating Hand Pressure from a Single RGB Image. In Computer Vision – ECCV 
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceed-
ings, Part VI (Tel Aviv, Israel). Springer-Verlag, Berlin, Heidelberg, 328–345. 
https://doi.org/10.1007/978-3-031-20068-7_19 

[17] Alex Graves. 2012. Sequence transduction with recurrent neural networks. In 
ICML Workshop on Representation Learning. 

[18] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. 
2006. Connectionist Temporal Classifcation: Labelling Unsegmented Sequence 
Data with Recurrent Neural Networks. In Proceedings of the 23rd International 
Conference on Machine Learning. 369–376. 

[19] Shangchen Han, Po-Chen Wu, Yubo Zhang, Beibei Liu, Linguang Zhang, Zheng 
Wang, Weiguang Si, Peizhao Zhang, Yujun Cai, Tomas Hodan, Randi Cabezas, 
Luan Tran, Muzafer Akbay, Tsz-Ho Yu, Cem Keskin, and Robert Wang. 2022. 
UmeTrack: Unifed multi-view end-to-end hand tracking for VR. In SIGGRAPH 
Asia 2022 Conference Papers. 

[20] Zhenyi He, Christof Lutteroth, and Ken Perlin. 2022. Tapgazer: Text entry with 
fnger tapping and gaze-directed word selection. In Proceedings of the 2022 CHI 
Conference on Human Factors in Computing Systems. 1–16. 

[21] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How fast is 
fast enough? a study of the efects of latency in direct-touch pointing tasks. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY, 
USA, 2291–2300. https://doi.org/10.1145/2470654.2481317 

[22] Luis A. Leiva, Sunjun Kim, Wenzhe Cui, Xiaojun Bi, and Antti Oulasvirta. 
2021. How We Swipe: A Large-scale Shape-writing Dataset and Empirical 
Findings. In Proceedings of the 23rd International Conference on Mobile Human-
Computer Interaction (Toulouse & Virtual, France) (MobileHCI ’21). Associa-
tion for Computing Machinery, New York, NY, USA, Article 11, 13 pages. 
https://doi.org/10.1145/3447526.3472059 

[23] Jinyu Li et al. 2022. Recent advances in end-to-end automatic speech recognition. 
APSIPA Transactions on Signal and Information Processing 11, 1 (2022). 

[24] Yang Li, Yuan Shangguan, Yuhao Wang, Liangzhen Lai, Ernie Chang, Changsheng 
Zhao, Yangyang Shi, and Vikas Chandra. 2024. Not All Weights Are Created 
Equal: Enhancing Energy Efciency in On-Device Streaming Speech Recognition. 
arXiv preprint arXiv:2402.13076 (2024). 

[25] Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. 2017. 
DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset. In Proceedings of 
the Eighth International Joint Conference on Natural Language Processing (Volume 
1: Long Papers). Asian Federation of Natural Language Processing, Taipei, Taiwan, 
986–995. https://www.aclweb.org/anthology/I17-1099 

[26] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. 
2020. Disentangling and unifying graph convolutions for skeleton-based action 
recognition. In Proceedings of the IEEE/CVF conference on computer vision and 

https://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://doi.org/10.1145/3173574.3174220
https://doi.org/10.1145/3232163
https://doi.org/10.1145/1978942.1979301
https://doi.org/10.1145/502716.502753
https://doi.org/10.1007/978-3-031-20068-7_19
https://doi.org/10.1145/2470654.2481317
https://doi.org/10.1145/3447526.3472059
https://www.aclweb.org/anthology/I17-1099




StegoType: Surface Typing from Egocentric Cameras 

pattern recognition. 143–152. 
[27] Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin Dong, Tao Qin, Liwei Wang, 

and Tie-Yan Liu. 2019. Understanding and Improving Transformer From a Multi-
Particle Dynamic System Point of View. arXiv preprint arXiv:1906.02762 (2019). 

[28] Yan Ma, Shumin Zhai, IV Ramakrishnan, and Xiaojun Bi. 2021. Modeling Touch 
Point Distribution with Rotational Dual Gaussian Model. In The 34th Annual 
ACM Symposium on User Interface Software and Technology (Virtual Event, USA) 
(UIST ’21). Association for Computing Machinery, New York, NY, USA, 1197–1209. 
https://doi.org/10.1145/3472749.3474816 

[29] I. Scott MacKenzie and R. William Soukoref. 2002. A character-level error 
analysis technique for evaluating text entry methods. In Proceedings of the Second 
Nordic Conference on Human-Computer Interaction (Aarhus, Denmark) (NordiCHI 
’02). Association for Computing Machinery, New York, NY, USA, 243–246. https: 
//doi.org/10.1145/572020.572056 

[30] I Scott MacKenzie and R William Soukoref. 2003. Phrase sets for evaluating text 
entry techniques. In CHI’03 extended abstracts on Human factors in computing 
systems. 754–755. 

[31] Manuel Meier, Paul Streli, Andreas Fender, and Christian Holz. 2021. TapID: 
Rapid touch interaction in virtual reality using wearable sensing. In 2021 IEEE 
Virtual Reality and 3D User Interfaces (VR). 519–528. 

[32] Yajie Miao, Mohammad Gowayyed, and Florian Metze. 2015. EESEN: End-to-end 
speech recognition using deep RNN models and WFST-based decoding. In 2015 
IEEE workshop on automatic speech recognition and understanding (ASRU). IEEE, 
167–174. 

[33] Jumon Nozaki and Tatsuya Komatsu. 2021. Relaxing the Conditional Indepen-
dence Assumption of CTC-based ASR by Conditioning on Intermediate Predic-
tions. In Interspeech. https://api.semanticscholar.org/CorpusID:233168606 

[34] Mark Richardson, Matt Durasof, and Robert Wang. 2020. Decoding surface touch 
typing from hand-tracking. In Proceedings of the 33rd annual ACM symposium on 
user interface software and technology. 686–696. 

[35] Fadime Sener, Dibyadip Chatterjee, Daniel Shelepov, Kun He, Dipika Singhania, 
Robert Wang, and Angela Yao. 2022. Assembly101: A large-scale multi-view video 
dataset for understanding procedural activities. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition. 21096–21106. 

[36] Junxiao Shen, John Dudley, and Per Ola Kristensson. 2023. Fast and Robust 
Mid-Air Gesture Typing for AR Headsets using 3D Trajectory Decoding. IEEE 
Transactions on Visualization and Computer Graphics (2023). 

[37] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Ching-Feng Yeh, Julian Chan, 
Frank Zhang, Duc Le, and Michael L. Seltzer. 2021. Emformer: Efcient Memory 
Transformer Based Acoustic Model For Low Latency Streaming Speech Recogni-
tion. In Proceedings of The IEEE International Conference on Acoustics, Speech and 
Signal Processing. 6783–6787. 

[38] Yangyang Shi, Chunyang Wu, Dilin Wang, and Others. 2022. Streaming Trans-
former Transducer based Speech Recognition Using Non-Causal Convolution. 
In The proceeding of the IEEE International Conference on Acoustics, Speech and 
Signal Processing. 8277–8281. 

[39] R. William Soukoref and I. Scott MacKenzie. 2003. Metrics for Text Entry 
Research: An Evaluation of MSD and KSPC, and a New Unifed Error Metric. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Ft. 
Lauderdale, Florida, USA) (CHI ’03). Association for Computing Machinery, New 
York, NY, USA, 113–120. https://doi.org/10.1145/642611.642632 

[40] Paul Streli, Jiaxi Jiang, Andreas Rene Fender, Manuel Meier, Hugo Romat, and 
Christian Holz. 2022. TapType: Ten-fnger text entry on everyday surfaces via 
Bayesian inference. In Proceedings of the 2022 CHI Conference on Human Factors 
in Computing Systems. 1–16. 

[41] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and Per Ola Kris-
tensson. 2018. The Impact of Word, Multiple Word, and Sentence Input on Virtual 
Keyboard Decoding Performance. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). ACM, New 
York, NY, USA, Article 626, 12 pages. https://doi.org/10.1145/3173574.3174200 

[42] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling, 
and Per Ola Kristensson. 2019. VelociWatch: Designing and Evaluating a Vir-
tual Keyboard for the Input of Challenging Text. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) 
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14. 
https://doi.org/10.1145/3290605.3300821 

[43] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using Sentence-
Based Decoding of Touchscreen Keyboard Input. In Proceedings of the 33rd Annual 
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of 
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 
659–668. https://doi.org/10.1145/2702123.2702135 

[44] Raphael Wimmer, Andreas Schmid, and Florian Bockes. 2019. On the La-
tency of USB-Connected Input Devices. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI 
’19). Association for Computing Machinery, New York, NY, USA, 1–12. https: 
//doi.org/10.1145/3290605.3300650 

UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

[45] Xin Yi, Chen Liang, Haozhan Chen, Jiuxu Song, Chun Yu, Hewu Li, and Yuanchun 
Shi. 2023. From 2d to 3d: Facilitating single-fnger mid-air typing on qwerty key-
boards with probabilistic touch modeling. Proceedings of the ACM on Interactive, 
Mobile, Wearable and Ubiquitous Technologies (2023), 1–25. 

[46] Xin Yi, Chun Yu, Mingrui Zhang, Sida Gao, Ke Sun, and Yuanchun Shi. 2015. ATK: 
Enabling Ten-Finger Freehand Typing in Air Based on 3D Hand Tracking Data. 
In Proceedings of the 28th Annual ACM Symposium on User Interface Software and 
Technology. 539–548. 

[47] Mingrui Ray Zhang, Shumin Zhai, and Jacob O Wobbrock. 2022. TypeAnywhere: 
A QWERTY-based text entry solution for ubiquitous computing. In Proceedings 
of the 2022 CHI Conference on Human Factors in Computing Systems. 1–16. 

A INTENT EDIT DISTANCE 
(1) CER (character error rate) 

The Levenshtein distance is calculated using a dynamic pro-
gramming approach which populates the distance matrix 
using a set of edge cost rules, where the fnal edit distance 
is taken from the bottom right cell (Equation 6). This imple-
ments the minimum edit distance, i.e. the minimum number 
of substitutions, insertions, or deletions necessary to trans-
form the target sequence into the predicted sequence. The 
character error rate is calculated as the ratio of the Leven-
shtein edit distance to the length of the target sequence. 

(2) I-CER (intent character error rate): 
A subset of target tokens correspond to intent labels, and 
the error rate corresponding to this subset of the target se-
quence is congruous with our objective of predicting user 
intent. Because the alignment of prediction events with label 
events is not known a priori and we only know whether tar-
get tokens are intentional, not predicted tokens, we cannot 
simply flter the input sequences to calculate this error rate. 
Instead, we modify the edit distance calculation to discount 
substitution and deletion errors corresponding to non-intent 
target tokens (Figure 11). The result is in an edit distance 
which is always the same or smaller than the full-sequence 
edit distance, discarding any edits associated with non-intent 
labels. To calculate a meaningful character error rate this 
edit distance is then normalized by the number of intent 
tokens in the target sequence (Equation 8). 

�del (� � ) = 1, �ins (�� ) = 1, �sub (�� , � � ) = 1 ��, � −1 + �del (� � ) 
��, � = min 

 
�� −1, � + �ins (�� ) 

(6) �� −1, � −1 + [�� ≠ � � ] · �sub(�� ,� � ) 

� |a |, |b |CER(a, b) = (7)|b| 

�del (� � ) = [� � is intent], �ins (�� ) = 1, �sub (�� , � � ) = [� � is intent] 
� |a |, |b |I-CER(a, b) = |{�� ∈ b | �� is intent}| 

(8) 

B EMISSION LATENCY 
The dynamic programming edit distance calculation can be modi-
fed to support backtracking to fnd the optimal set of alignments 
between the predicted and target token sequences [29]. With a 

https://doi.org/10.1145/3472749.3474816
https://doi.org/10.1145/572020.572056
https://doi.org/10.1145/572020.572056
https://api.semanticscholar.org/CorpusID:233168606
https://doi.org/10.1145/642611.642632
https://doi.org/10.1145/3173574.3174200
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1145/3290605.3300650


UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA 

Transition costs

Target (with typo)

P
re

d
ic

ti
o
n

Alignment (via backtracking):

C

A

R

C A G < T

0

0

0 0

0 1

3

1 2

4

3 2 1

1

2

2

2 3

2

1 2

1

1

1

< 0

0 1

4 3 2 1 10

1

0/1 1

Oracle off-track

(typo state)

Oracle on-track

(initial/clean state)

Figure 11: Levenshtein edit distance, calculated using dy-
namic programming, is modifed to discount substitution 
or deletion errors corresponding to non-intent label tokens. 
Backtracking is used to fnd all prediction/label alignments 
corresponding to the optimal edit distance to enable derived 
metrics like emission latency. 

Richardson et al. 

reasonably accurate model there typically exist many unambiguous 
one-to-one correspondences between target and predicted tokens. 

Since emission timestamps for both target and predicted tokens 
are known, we can evaluate statistics over this set of uniquely 
corresponded tokens to compute the emission latency and per-key 
accuracy of a model. 

Occasionally two consecutive insertion and deletion errors which 
are well separated in time will be merged by the edit distance calcu-
lation into a single substitution error. While rare, these correspon-
dences can be attributed extremely high latency and erroneously 
infuence overall statistics. To combat this issue we introduce a 
supplemental fltering step where correspondences with an outlier 
emission latency are discarded. In our evaluation we set this latency 
threshold to the range −0.17� ≤ ������� ≤ 0.50� at 30Hz. 


	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Training Data
	4.1 Open-loop data collection
	4.2 Closed-loop data collection
	4.3 Closed-loop intent data collection
	4.4 Participant instruction

	5 Motion Model
	5.1 Input features
	5.2 Backbone model
	5.3 Model Training
	5.4 Label dependence

	6 Evaluation
	6.1 Offline evaluation
	6.2 Online evaluation

	7 Discussion and limitations
	8 Conclusion
	Acknowledgments
	References
	A Intent Edit Distance
	B Emission latency



