
Proceedings of the Eighth Workshop on Speech and Language Processing for Assistive Technologies, pages 37–43
Minneapolis, Minnesota, USA c©2019 Association for Computational Linguistics

Investigating Speech Recognition for Improving Predictive AAC

Jiban Adhikary, Robbie Watling, Crystal Fletcher, Alex Stanage, Keith Vertanen
Michigan Technological University

Houghton, Michigan, USA
{jiban, rwatling, tafletch, amstanag, vertanen}@mtu.edu

Abstract
Making good letter or word predictions can
help accelerate the communication of users
of high-tech AAC devices. This is particu-
larly important for real-time person-to-person
conversations. We investigate whether per-
forming speech recognition on the speaking-
side of a conversation can improve language
model based predictions. We compare the ac-
curacy of three plausible microphone deploy-
ment options and the accuracy of two commer-
cial speech recognition engines (Google and
IBM Watson). We found that despite recogni-
tion word error rates of 7–16%, our ensemble
of N-gram and recurrent neural network lan-
guage models made predictions nearly as good
as when they used the reference transcripts.

1 Introduction

People who are non-verbal often use some form
of Augmentative and Alternative Communication
(AAC). Common forms of speaking disorders in-
clude stuttering, cluttering, apraxia, dysarthria,
aphasia, Parkinson’s disease, amyotrophic lateral
sclerosis (ALS), or cerebral palsy. An AAC device
may let a user select letters, words, and phrases
from its interface and a communication partner
can read the text or hear it via text-to-speech. The
rate at which an AAC user can enter text is typi-
cally slow (often less than 10 words-per-minute)
(Trnka et al., 2009; Simpson et al., 2006; Hig-
ginbotham et al., 2007). That is why predictive
AAC devices normally use a language model to
try and make suggestions of likely upcoming text.
These predictions are usually made based solely
on the text entered by the AAC user. They typ-
ically ignore the two-way nature of conversation
which can offer many contextual clues.

In this paper, first we investigate how to record
and recognize the speech of a partner communi-
cating with the AAC user. Then we investigate
if speech recognition on partner speech improves
two-sided conversational language modeling.

2 Related Work

Predictive AAC devices typically use an N-gram
language model (LM). An N-gram LM calculates
the probability of a token given the previous N-1
tokens. The performance of this model depends
on the training data being closely matched to a
user’s text. But for practical, ethical, and privacy
issues, there is a scarcity of text written by AAC
users. Researchers have resorted to training LMs
on data from news articles (Trnka et al., 2009) or
phone transcripts (Wandmacher et al., 2008). An-
other option is the large amounts of text that can be
mined from the internet, e.g. tweets, blog posts, or
Wikipedia articles. While such web data may be
informal or have other artifacts such as abbrevia-
tions, researchers have used filtering methods such
as cross entropy difference selection (Moore and
Lewis, 2010) to select training data for AAC lan-
guage models (Vertanen and Kristensson, 2011).

Recently, recurrent neural network language
models (RNNLMs) have achieved state-of-the-
art performance over traditional N-gram language
models. RNNLMs have been shown to bet-
ter model long range dependencies when com-
bined with techniques such as long short-term
memory (Hochreiter and Schmidhuber, 1997) or
gated units (Chung et al., 2014). Further gains
have also been achieved by interpolating N-gram
models (Mikolov et al., 2014) and other tech-
niques (Mikolov et al., 2011a,b).

In addition to using textual context, previous
AAC work has also investigated using face detec-
tion (Kane et al., 2012), vision (Kane and Mor-
ris, 2017), and location (Demmans Epp et al.,
2012) as context for AAC predictions. But lim-
ited work has been done to predict AAC user’s re-
sponse based on partner speech. Wisenburn (2008;
2009) created a program called Converser and
used speech recognition to identify the speaking
partner’s words. This input was then parsed by a

37

A: Did you call the theater?
B: So sorry, I forgot to call the theater.
A: You can just go online.
B: That’s true, I’ll do that now.
A: What movie is it that you want to see?
B: The lord of the rings.

Table 1: A dialogue created by Amazon Turk workers.

Figure 1: The application used to record dialogues.

noun phrase identification system. Identified noun
phrases, along with relevant static messages, were
displayed to the user. This provided users with a
faster communication rate compared to a system
that did not use partner speech. In our work, we
also perform speech recognition on the partner’s
speech. However, we will use recognition results
as context to our language models in hopes of bet-
ter predicting an AAC user’s upcoming text.

3 Speech Data Collection

Our first step was to obtain text and audio data
reasonably representative of everyday person-to-
person conversations. In this section, we detail
how we collected this data. Further, we designed
our collection to answer the practical question of
how and where a microphone might be located for
recording a partner’s speech.

As a starting point for our spoken dialogue col-
lection, we used the text dialogues collected by
Vertanen (2017). These dialogues were invented
by workers on Amazon Mechanical Turk. The di-
alogue started with a question invented by one of
the workers. Subsequent workers then extended
the dialogue by another turn until a total of six
turns were completed. Table 1 shows an example
dialogue. The original collection had 1,419 dia-
logues. We removed 265 we deemed potentially
offensive, resulting in a set of 1,154 dialogues.

3.1 Audio Data Collection
The dialogue data from (Vertanen, 2017) consisted
only of text. We wanted to investigate whether
a partner’s speech could improve an AAC de-
vice’s predictions. We designed a desktop applica-
tion to record audio data of participants’ speaking
turns in the text dialogues. The application high-
lighted the current turn we wanted the participant
to speak. Any previous turns of the dialogue were
also shown as context. The application recorded
from three microphones simultaneously:

• HEADSET — A Logitech H390 USB noise
cancelling headset microphone.

• LAPTOP — The built-in microphone of a 13”
2015 MacBook Pro laptop.

• CONFERENCE — A MXL AC404 USB con-
ference microphone. This microphone was
positioned behind the laptop at a distance of
approximately 0.9 m from the participant.

The application allowed the participant to re-
record any utterances in which they misspoke. We
analyzed just the last recording for each dialogue
turn. Audio was recorded at 44.1 kHz. We re-
cruited 14 participants via convenience sampling.
Four self-reported as male, ten as female. The av-
erage age was 36. Participant 5 reported having
a foreign accent. Each participant took part in an
approximately half-hour session and was paid $10.
Participants sat at a desk with a laptop in quiet of-
fice. They were allowed to adjust their chair so
they could comfortably operate the laptop.

Participants first recorded three practice dia-
logues. We did not analyze the practice dialogues.
Each participant then completed half the turns in
28 additional dialogues. The subsequent partici-
pant completed the other half of the turns of the
same 28 dialogues. In total, we collected 1,176 ut-
terances constituting both sides of 196 dialogues.
We have made our filtered text dialogues, audio
recordings, recognition results, and Java audio col-
lection application available to other researchers1.

3.2 Speech Recognition Experiments
We performed speech recognition using two com-
mercially available speech recognizers, Google
Cloud Speech-to-Text and IBM Watson Speech-
to-Text. We performed speech recognition on au-
dio from each of the three different microphones.

1https://digitalcommons.mtu.edu/
data-files/1

38

Microphone
LAPTOP HEADSET CONF.

GOOGLE 7.3±1.0 7.0±1.0 8.9±1.2
WATSON 10.5± 1.2 10.7±1.2 16.0±1.6

Table 2: Word Error Rate (WER %) using different mi-
crophones and speech recognizers. Results are format-
ted as mean ± 95% bootstrap confidence intervals.

We computed the Word Error Rate (WER) of each
recognition result against its reference transcript.

The reference transcripts included various nu-
meric characters representing times or amounts.
We found the recognition results on such turns
were variable. Sometimes the recognizer returned
numeric transcriptions and sometimes numbers
were spelled out as words. For consistency, we
dropped all dialogues if any of its reference turns
had a number in it. This reduced the number of
dialogues from 196 to 160.

As shown in Table 2, the mean WER on the
three different microphones using the GOOGLE

recognizer was LAPTOP 7.3%, HEADSET 7.0%,
and CONFERENCE 8.9%. IBM’s recognizer had
higher error rates with LAPTOP at 10.5%, HEAD-
SET at 10.7%, and CONFERENCE at 16.0%.

Figure 2 shows the WER for each participant
using the GOOGLE speech recognizer and audio
from the HEADSET microphone. 9 of the 14 par-
ticipants had a lower mean WER of 5.5%. This
was driven by the fact that 84.0% of their utter-
ance turns were recognized with no errors.

We recorded our audio in a quiet office. We also
wanted to explore how our methods might work in
noisier locations. To do this, we injected a record-
ing of street noise into our clean audio data. We
used the SoX Sound eXchange utility to add in the
street noise at three different volume levels: 0.1,
0.2, and 0.3. Figure 3 shows the mean word er-
ror rates on recordings with no noise and at the
three noise levels. Even at noise volume level 0.3,
both recognizers’ mean word error rates using the
HEADSET and LAPTOP microphones stayed be-
low 40%. However, the mean word error rates us-
ing the CONFERENCE microphone started deteri-
orating more sharply with increasing noise.

4 Language Modeling Experiments

We now investigate how to use language models to
better predict turns in our dialogue collection. Re-
call we recorded both sides of 196 of the dialogues
from our set of 1,154 dialogues. After dropping

Participants
0

20

40

60

80

100

W
or

d
E

rr
or

R
at

e
(W

E
R

%
)

Figure 2: Participants’ per utterance WER using the
Google recognizer and audio from a headset mic.

0.0 0.1 0.2 0.3
Volume level of noise

0

20

40

60

80

M
ea

n
W

or
d

E
rr

or
R

at
e

(W
E

R
%

) google-headset
google-laptop
google-conference
watson-headset
watson-laptop
watson-conference

Figure 3: WER on audio dialogue turns without noise
and with three different injected noise levels.

dialogues with numbers, we arrived at a test set
of 160 dialogues with audio data. We created
text-only training and development sets from the
remaining 958 dialogues. From these dialogues,
we dropped 128 that contained numbers. We ran-
domly selected 160 from the remaining dialogues
as a development set and 670 as a training set.

Our language modeling experiments used a vo-
cabulary of 35 K words. The vocabulary consisted
of the most frequent known English words oc-
curring in 50 M words of sentences parsed from
Twitter. Any words not in this vocabulary were
mapped to an unknown word token. We converted
text to lowercase and removed punctuation aside
from apostrophe. Throughout, we report the per-
word perplexity of our test set (160 dialogues, 960
turns, 7.1 K words). We excluded the sentence end
pseudo-word from our calculations.

4.1 N-gram Language Models

We took each turn in the training set as an in-
dependent training example (4,020 turns, 30 K
words). We trained a 4-gram interpolated modified
Kneser-Ney model using SRILM (Stolcke, 2002;

39

Training data Words PPL

Twitter, small amount of data 30 K 417.3
Crowd dialogues 30 K 211.8
Twitter, large amount of data 50 M 96.0

+ CE diff. 25% dialogues 50 M 91.0
+ CE diff. 50% dialogues 50 M 86.8
+ CE diff. 75% dialogues 50 M 83.5
+ CE diff. 100% dialogues 50 M 83.5
+ Optimized CE threshold 50 M 77.4

Table 3: N-gram perplexity varying training data.

Stolcke et al., 2011). As shown in Table 3, the per-
plexity on the test set was 211.8. For comparison,
we trained a 4-gram model on 30 K words of ran-
dom Twitter data collected via Twitter’s streaming
API between 2009–2015. The Twitter model had
a much higher perplexity of 417.3.

An approach to filtering an out-of-domain train-
ing data is cross-entropy difference selection
(Moore and Lewis, 2010). This approach cal-
culates the cross-entropy of individual sentences
under an in-domain and an out-of-domain model
trained on similar amounts of data. We trained our
in-domain model on between 25–100% of the text
in our Turk dialogue training set.

We selected 50 M words of Twitter data be-
low a certain cross-entropy difference threshold.
We used an initial threshold of -0.3. The more
negative the threshold, the more sentences had to
resemble in-domain text in order to be selected.
As shown in Table 3, using more in-domain data
reduced perplexity though gains eventually flat-
tened. Finally, we used all the in-domain data
to search for the optimal cross-entropy difference
threshold on the development set. The optimal
threshold of -0.06 further lowered perplexity to 77.

4.2 RNN Language Models

Next, we investigated training Recurrent Neu-
ral Network Language Models (RNNLMs) on
the cross-entropy difference selected Twitter data.
We trained our models using the Faster RNNLM
toolkit2. For each model type, we trained 10
RNNLMs with different random initialization
seeds. We report the perplexity on the test set of
the model that had the lowest perplexity on the de-
velopment set. Unless otherwise noted, we used
the default hyperparameters of Faster RNNLM.

2https://github.com/yandex/
faster-rnnlm

Model PPL PPL
Sentence Dialogue

Twitter RNNLM 179.0 129.3
+ GRUs 167.8 122.8
+ NCE 172.2 111.9
+ maximum entropy 123.7 84.1
+ Twitter 4-gram LM 75.2 71.5
+ unigram cache 75.2 68.5

Table 4: Perplexities with added features. We reset the
RNNLM between each sentence or after each dialogue.

During evaluation we reinitialized the RNNLM
after every sentence or after every six-turn dia-
logue. This allowed us to observe how much the
model was adapting to a particular dialogue while
avoiding allowing the model to adapt to the gen-
eral style of our Turk dialogues.

As shown in Table 4, a model trained with 250
sigmoid units had a perplexity of 129.3 on each
dialogue. Switching to 250 Gated Recurrent Units
(GRUs) (Chung et al., 2014) reduced perplexity to
122.8. Switching to Noise Contrastive Estimation
(NCE) (Chen et al., 2015) further reduced perplex-
ity to 111.9. Training a maximum entropy lan-
guage model of size 1000 and order 4 in the RNN
reduced perplexity substantially to 84.1.

We interpolated our best RNNLM with our best
previous N-gram model. We optimized the mix-
ture weights with respect to our development set.
This further reduced perplexity to 71.5. We also
investigated a unigram cache (Grave et al., 2016).
Similar to the RNNLM, we reset the cache after
each sentence or after each dialogue. The cache
model provided a small reduction in perplexity to
68.5. The mixture weights were: N-gram 0.55,
RNNLM 0.42, and unigram cache 0.04.

Comparing the result columns in Table 4,
we see consistently higher perplexities when the
RNNLM was evaluated on sentences instead of on
entire dialogues. In particular, the RNNLM was
substantially worse with a perplexity of 123.7 on
sentences versus 84.1 on dialogues. This demon-
strates the ability of the RNNLM to adapt to as-
pects of the text over a longer time horizon.

4.3 Two-sided Dialogue Language Models

We now turn to training language models on two-
sided dialogues. Since our Amazon Turk dia-
logue collection is relatively small, we instead
used dialogues from movies (Danescu-Niculescu-
Mizil and Lee, 2011). We created a training set

40

Model PPL

Movie dialogue 7-gram 138.5
Movie dialogue RNNLM 129.1
Turk dialogue RNNLM 185.5
Mixture, dialogue models 104.3
Mixture, Twitter + dialogue + cache 66.3

Table 5: Perplexity of models trained on two-sided di-
alogues and mixtures of dialogue and twitter models.

of 83 K dialogues consisting of 305 K turns and
3.2 M words. We introduced a pseudo-word to de-
note speaker changes. We excluded this speaker
change word from our perplexity calculations. We
treated the set of turns making up a dialogue as a
single “sentence” during training and testing. We
evaluated models on each dialogue in our Turk test
set (the same set used previously). In the case of
RNNLMs, we reset the model after each dialogue.

We first tested 4-gram through 8-gram N-gram
models. The 4-gram had the highest perplexity of
139.2 The 7-gram model had the best perplexity
of 138.5 (Table 5). Next we trained a RNNLM on
the movie dialogues using 300 GRU units, NCE,
and with a maximum entropy model of size 1000,
order 4. The RNNLM had a lower perplexity of
129.1. This again highlights the ability of the
RNNLM to better model long-range dependencies
and/or topics compared to the N-gram model.

We also trained an RNNLM on just the Turk
dialogues. We used 100 GRU units, NCE, and a
maximum entropy model with 100 units and an
order of 4. This model had a perplexity of 185.5.
We think this model’s worse performance reflects
the substantially smaller amount of training data.
By interpolating these three dialogue models, we
obtained an even lower perplexity of 104.3. The
mixture weights were: Movie 7-gram 0.24, Movie
RNNLM 0.40, and Turk RNNLM 0.37.

Our two-sided models were trained on modest
amounts of data. To see if they still offered gains
in combination with models trained on substan-
tially more Twitter data, we interpolated all our
models. The mixture weights were: Twitter N-
gram 0.43, Twitter RNNLM 0.32, movie dialogue
N-gram 0.05, movie dialogue RNNLM 0.10, Turk
dialogue RNNLM 0.06, and unigram cache 0.04.
The mixture model’s perplexity was 66.3, a mod-
est gain compared to the 68.5 obtained using a
mixture of the Twitter models and unigram cache.
It does however represent a more substantial gain
compared to the 77.4 of the best N-gram only

model. This shows that having access to both sides
of a dialogue combined with the adaptive nature of
RNNLMs may offer improved predictive AAC.

4.4 Impact of Speech Recognition Errors

In real-time person-to-person conversations, we
cannot expect to have a perfect transcript of the
other side of the conversation. We now investigate
the impact of speech recognition errors on the per-
formance of our language models. We did this by
measuring the perplexity on two copies of the test
set. In the first copy, we replaced the transcript
of the even number dialogue turns with the speech
recognition result of one of our participants speak-
ing that turn. In the second copy, we replaced the
odd number turns. We report the perplexity cal-
culated from the odd turns from the first copy and
the even turns from the second copy.

The entire six turns were provided to the lan-
guage models for both copies to allow the model
to condition on prior turns (including any speech
errors). We reset the RNNLMs and unigram cache
model between each dialogue. We used the previ-
ous best ensemble of six models which had a per-
plexity on the test dialogues of 66.3. We tested
injecting the speech recognition results from the
three microphones, two recognition engines, and
four noise levels (none, 0.1, 0.2, and 0.3).

As shown in Figure 4, the perplexity of our en-
semble of models only increased slightly when
we replaced the reference transcripts with speech
recognition results based on noise-free audio. For
example, the far-field conference microphone had
a WER of 8.9%. However, the errors introduced
by recognition only slightly increased the perplex-
ity of the dialogues from 66.3 to 66.6. Similar to
WER in Figure 3, as the level of injected noise in-
creased, perplexities also increased.

5 Discussion and Limitations

In this paper, we conducted an initial investigation
into the feasibility of performing speech recogni-
tion on an AAC user’s speaking partner. We found
that whether audio was captured from a wired
headset or from a far-field microphone, we could
recognize conversational-style utterances with er-
ror rates between 7–16%. We found Google’s
speech engine provided more accurate recogni-
tion than the IBM Watson recognizer. However,
IBM’s engine offers other benefits such as expos-
ing probabilistic information about recognition re-

41

0.0 0.1 0.2 0.3
Volume level of noise

66

67

68

69

70
Pe

rp
le

xi
ti

es
google-headset
google-laptop
google-conference
watson-headset
watson-laptop
watson-conference
reference transcripts

Figure 4: Perplexities using speech recognition on part-
ner turns rather than reference transcripts. Results for
no added noise, and for three levels of injected noise.

sults (e.g. a word confusion network). Such in-
formation might be leveraged to help avoid con-
ditioning a predictive AAC interface on erroneous
regions of a partner’s speech recognition result.

Our participants were given the verbatim text
for each of their dialogue turns. As such, we can
expect they spoke more fluently than one could ex-
pect in a spontaneous conversation. Further, we
only collected audio in a quiet environment. While
our results seem robust to artificially added noise,
it remains to be seen if this holds for real-world
noisy environments. As such, our error rates prob-
ably represent a lower-bound of what could be ex-
pected. Nonetheless, it is reassuring that our lan-
guage models predict the non-speaking side’s text
with only minimal perplexity loses despite relying
on text obtained via speech recognition.

Thus far we have focused on ascertaining
whether there is a potential advantage to con-
ditioning on recognition of the speaking side.
Whether the perplexity gains we showed will re-
sult in actual practical improvements in the aus-
pices of a predictive AAC interface remain to
be seen. Further work is needed to understand
whether these language model gains will result in,
for example, better word predictions that actually
save a user keystrokes. Even more work is needed
to validate if end-user performance improves.

The use of speech recognition by an AAC de-
vice also has obvious privacy implications. This
may require the AAC device or user to allow part-
ners to opt-in to having their voice recognized.
Further, our current work used cloud-based speech
recognition. Users may prefer to have their speech
recognized locally on device. Local recognition

may also be necessary to avoid network latency or
to allow use without network connectivity.

Our goal here was to demonstrate some of the
building blocks necessary for modeling everyday
conversational-style text. While we made some ef-
fort to optimize our models (e.g. tuning mixture
weights on development data), further improve-
ments are certainly possible. For example, we did
not conduct an extensive search for the best hyper-
parameters used during RNNLM training. Further,
we need to investigate whether our methods and
results scale to substantially more training data.

Our results show the benefits of language mod-
els based on recurrent neural networks. In partic-
ular, we found even when trained on non-dialogue
data, RNNLMs adapted to the content of our short
dialogues, providing good gains compared to an
N-gram model. Further, we showed how a small
in-domain corpus can be used to optimize models
for everyday conversations. Despite our relatively
small amount of two-sided dialogues data (3.2 M
words of movie dialogues), we obtained improve-
ments compared to using models trained only on
much more non-dialogue data (50 M words of
Twitter). In the end, we found an ensemble of N-
gram and RNNLMs trained on sentence and dia-
logues combined with a unigram cache model pro-
vided the best performance.

6 Conclusions

AAC users often face challenges in taking part in
everyday conversations due to their typically slow
text entry rates. Predictions can provide an op-
portunity to accelerate their communication rate,
but it is crucial these predictions be as accurate as
possible. Leveraging real-world contextual clues
offers one route to improving these predictions. In
this paper, we found speech can be accurately rec-
ognized with a variety of microphone configura-
tions that might be deployed on an AAC device.
Further, we found the error rates of current state-
of-the-art recognizers allowed predictions nearly
as good as having the verbatim text of the part-
ner’s turn. We think this work provides promis-
ing results showing a partner’s speech can provide
context to improve an AAC device’s predictions.

7 Acknowledgements

This material is based upon work supported by the
NSF under Grant No. IIS-1750193.

42

References
Xie Chen, Xunying Liu, Mark J.F. Gales, and Philip C.

Woodland. 2015. Recurrent neural network lan-
guage model training with noise contrastive estima-
tion for speech recognition. In IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP ’15, pages 5411–5415.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. In Proceedings of the
2nd Workshop on Cognitive Modeling and Compu-
tational Linguistics, pages 76–87. Association for
Computational Linguistics.

Carrie Demmans Epp, Justin Djordjevic, Shimu Wu,
Karyn Moffatt, and Ronald M Baecker. 2012. To-
wards providing just-in-time vocabulary support for
assistive and augmentative communication. In Pro-
ceedings of the 2012 ACM international conference
on Intelligent User Interfaces, pages 33–36. ACM.

Edouard Grave, Armand Joulin, and Nicolas
Usunier. 2016. Improving neural language
models with a continuous cache. arXiv preprint
arXiv:1612.04426.

D. Jeffery Higginbotham, Howard Shane, Susanne
Russell, and Kevin Caves. 2007. Access to AAC:
Present, past, and future. Augmentative and Alter-
native Communication, 23(3):243–257.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Shaun K Kane, Barbara Linam-Church, Kyle Althoff,
and Denise McCall. 2012. What we talk about:
designing a context-aware communication tool for
people with aphasia. In Proceedings of the 14th in-
ternational ACM SIGACCESS conference on Com-
puters and accessibility, pages 49–56. ACM.

Shaun K Kane and Meredith Ringel Morris. 2017.
Let’s talk about x: Combining image recognition
and eye gaze to support conversation for people with
ALS. In Proceedings of the 2017 Conference on De-
signing Interactive Systems, pages 129–134. ACM.

Tomáš Mikolov, Anoop Deoras, Stefan Kombrink,
Lukas Burget, and Jan Cernockỳ. 2011a. Empirical
evaluation and combination of advanced language
modeling techniques. In Proceedings of the Interna-
tional Conference on Spoken Language Processing,
pages 605–608.

Tomáš Mikolov, Armand Joulin, Sumit Chopra,
Michael Mathieu, and Marc’Aurelio Ranzato. 2014.
Learning longer memory in recurrent neural net-
works. arXiv preprint arXiv:1412.7753.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model.
In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP ’11, pages
5528–5531.

Robert C. Moore and William Lewis. 2010. Intelli-
gent selection of language model training data. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, ACLShort ’10, pages 220–224, Stroudsburg,
PA, USA. Association for Computational Linguis-
tics.

Richard Simpson, Heidi Koester, and Ed LoPresti.
2006. Evaluation of an adaptive row/column scan-
ning system. Technology and disability, 18(3):127–
138.

Andreas Stolcke. 2002. SRILM – an extensible lan-
guage modeling toolkit. In Seventh International
Conference on Spoken Language Processing, pages
901–904, Denver, CO.

Andreas Stolcke, Jing Zheng, Wen Wang, and Vic-
tor Abrash. 2011. SRILM at sixteen: Update
and outlook. In Proceedings of IEEE Automatic
Speech Recognition and Understanding Workshop,
volume 5 of ASRU ’11.

Keith Trnka, John McCaw, Debra Yarrington, Kath-
leen F McCoy, and Christopher Pennington. 2009.
User interaction with word prediction: The effects
of prediction quality. ACM Transactions on Acces-
sible Computing (TACCESS), 1(3):17.

Keith Vertanen. 2017. Towards improving predictive
aac using crowdsourced dialogues and partner con-
text. In ASSETS ’17: Proceedings of the ACM
SIGACCESS Conference on Computers and Acces-
sibility (poster), pages 347–348.

Keith Vertanen and Per Ola Kristensson. 2011. The
imagination of crowds: Conversational AAC lan-
guage modeling using crowdsourcing and large data
sources. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP’11, pages 700–711. Association for Com-
putational Linguistics.

Tonio Wandmacher, Jean-Yves Antoine, Franck
Poirier, and Jean-Paul Départe. 2008. Sibylle, an as-
sistive communication system adapting to the con-
text and its user. ACM Transactions on Accessible
Computing (TACCESS), 1(1):6.

Bruce Wisenburn and D. Jeffery Higginbotham. 2008.
An AAC application using speaking partner speech
recognition to automatically produce contextually
relevant utterances: objective results. Augmentative
and Alternative Communication, 24(2):100–109.

Bruce Wisenburn and D. Jeffery Higginbotham. 2009.
Participant evaluations of rate and communication
efficacy of an AAC application using natural lan-
guage processing. Augmentative and Alternative
Communication, 25(2):78–89.

43

