
Programming by Voice: Exploring User Preferences and Speaking
Styles

Sadia Nowrin
snowrin@mtu.edu

Michigan Technological University
Houghton, Michigan, USA

ABSTRACT
Programming by voice is a potentially useful method for individu-
als with motor impairments. Spoken programs can be challenging
for a standard speech recognizer with a language model trained
on written text mined from sources such as web pages. Having an
efective language model that captures the variability in spoken pro-
grams may be necessary for accurate recognition. In this work, we
explore how novice and expert programmers speak code without
requiring them to adhere to strict grammar rules. We investigate
two approaches to collect data by having programmers speak ei-
ther highlighted or missing lines of code. We observed that expert
programmers spoke more naturally, while novice programmers
spoke more syntactically. A commercial speech recognizer had a
high error rate on our spoken programs. However, by adapting the
recognizer’s language model with our spoken code transcripts, we
were able to substantially reduce the error rate by 27% relative to
the baseline on unseen spoken code.

CCS CONCEPTS
• Human-centered computing → Accessibility.

KEYWORDS
Voice Programming, Speech Recognition, Voice User Interfaces,
Accessibility

ACM Reference Format:
Sadia Nowrin and Keith Vertanen. 2023. Programming by Voice: Exploring
User Preferences and Speaking Styles. In ACM conference on Conversational
User Interfaces (CUI ’23), July 19–21, 2023, Eindhoven, Netherlands. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3571884.3597130

1 INTRODUCTION
Software development is a text input and text editing intensive
activity typically performed using a keyboard and a mouse. Such
reliance can present a signifcant barrier for individuals with motor
impairments who want to learn to program or pursue careers in
technology-related felds. This can be especially discouraging for
novices who are trying to enter the feld of programming. Addi-
tionally, even experienced software engineers can develop motor

This work is licensed under a Creative Commons Attribution International
4.0 License.

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0014-9/23/07.
https://doi.org/10.1145/3571884.3597130

Keith Vertanen
vertanen@mtu.edu

Michigan Technological University
Houghton, Michigan, USA

impairments such as a repetitive stress injury (RSI) due to the pro-
longed use of these input devices. Using voice to create code can be
an alternative approach to traditional text-based programming, po-
tentially improving the accessibility and efciency of programming
for individuals with motor impairments.

One possible architecture for a voice programming system would
consist of two components. The frst component would be a speech
recognizer that converts a user’s code utterances into the literal
words spoken (e.g. “increment num words by one”). The second
component would be a machine translation model that converts the
recognized text into the target language and preferred coding style
(e.g. “numWords++;”). This translation model could additionally be
guided by a model that is aware of the target programming language
grammar and any constraints introduced by the current location in
the program (e.g. which variables are in scope). This two-part archi-
tecture has the advantage that diferent machine translation models
could be swapped in for diferent target programming languages.
We anticipate the speech recognition component would require
minimal changes for diferent programming languages since the
acoustic properties and vocabulary used may strongly overlap be-
tween languages. This may be particularly true when users speak
code naturally (i.e. without explicitly dictating the literal characters
needed by a given language). We focus on the frst component in
this paper.

Classically, a speech recognizer works by frst converting a user’s
spoken sounds into possible words using an acoustic model. It
then searches for the most probable sequence of words guided by
a language model. Modern neural speech recognizers may use a
more end-to-end approach, taking sound as the input and directly
outputting letters or words. However, neural recognizers often
still incorporate a language model to rescore hypotheses since a
language model can be trained on large amounts of just text. While
there is a wealth of data to train accurate language models for
tasks such as writing emails, no such data exists for speaking code.
Collecting a large amount of data for a new domain such as spoken
code is challenging due to the variability in how programmers
speak code and the complexity of programming syntax.

As a frst step to supporting fexible and robust code input by
voice, we explore variations in spoken code, aiming to understand
diferent speaking styles and the potential ambiguities that can arise.
Our primary goals were to 1) capture a range of user variability,
and 2) develop a dataset of spoken code in order to train a language
model to improve speech recognition accuracy. We wanted to better
understand if programmers speak code naturally or in a literal
manner, whether they skip symbols, spell things out, or explicitly
denote cases. For example, consider the Java statement: “items[i]
= 5;”. Would programmers explicitly speak symbols such as square

https://doi.org/10.1145/3571884.3597130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3571884.3597130
mailto:vertanen@mtu.edu
mailto:snowrin@mtu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571884.3597130&domain=pdf&date_stamp=2023-07-19

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

brackets or semicolons? Would they speak in a more pseudo-code
style? For example, the programmer could just say “assign items at
location i to fve”. The latter is attractive as it might allow learning
a shared vernacular for common statements in diferent languages,
allowing programmers to more easily learn or switch between
languages.

While large language models (LLMs) [5, 6, 11, 17] have the ability
to generate a code block from a text prompt, they may not always
be accurate or correct [21]. This is because LLMs heavily rely on
the training data used to build them. If the training data is not repre-
sentative of the types of code being generated or is limited in scope,
the LLM may not perform well in accurately generating code. For
instance, a general-purpose programming language-trained model
may struggle to generate accurate code for specialized domains
like machine learning or cryptography. In such cases, it may be
necessary to manually correct individual lines or sections of the
generated code. While LLM-generated code can be a powerful tool
for programmers, it may not align with programmers’ preferred
workfow or coding style. Depending on the task at hand, a pro-
grammer may prefer to write code line-by-line or by breaking a
task down into smaller, more manageable pieces. Additionally, pro-
grammers may not always write code in a linear fashion. They may
jump back and forth between diferent sections of code or may
modify previously written lines of code. Speaking code line-by-line
may allow programmers to have more control over the code they
are creating and ensure that it meets their specifc requirements.

LLMs can help automate routine or repetitive coding tasks, free-
ing up programmers’ time to focus on more complex or creative
aspects of coding. However, for novices, relying too heavily on
LLMs to generate a whole code block could limit their ability to
learn coding concepts and develop problem-solving skills. For learn-
ers, it may be more benefcial to learn to code line-by-line, building
up their knowledge gradually and reinforcing their understand-
ing of each individual concept before moving on to more complex
topics. Additionally, for experts, relying too heavily on LLMs to
generate code could lead to a reduction in their coding skills and
ability to write code manually. This could be detrimental to their
long-term career prospects and could also limit their ability to iden-
tify and fx errors in auto-generated code. In this work, we aim
to investigate how programmers speak individual lines or small
segments of code.

A secondary goal of our user studies was to compare how par-
ticipants spoke missing lines of code (the target line of code was
blank) versus how they spoke highlighted lines of code (the target
line of code was specifed). Speaking missing code is closer to the
actual cognitive task of programming by voice while speaking high-
lighted lines would likely be quicker and easier but could result in a
fundamentally diferent speaking style. The purpose of evaluating
these two scenarios was to see which one would be most efective
for scaling up the data collection process. To understand if our col-
lected data can enhance the speech recognition system’s accuracy,
we performed ofine experiments using a commercial speech rec-
ognizer (Google Cloud Speech-to-Text). We adapted the language
model on our collected spoken code, which helped reduce the word
error rate (WER) by 27% relative. This shows the promise of improv-
ing recognition accuracy via changes to the speech recognizer’s
underlying language model.

Our work makes the following contributions:

(1) Our primary contribution is that we provide novel perspec-
tives into how diverse programmers speak code (i.e. without
teaching them a specifc grammar). This can help inform the
design of more efective and robust voice-based systems.

(2) We conduct the frst comparison of two possible approaches
in collecting spoken code. These approaches involved speak-
ing a missing line of code and speaking a highlighted line of
code. We further identify which approach is more efective in
capturing the necessary variations and developing accurate
language models for spoken code.

(3) We demonstrate how our collected data can be used to im-
prove the accuracy of a speech recognizer, highlighting the
importance of improving recognition accuracy in this do-
main.

(4) We release the frst data set containing individual lines of
code and the transcripts of how programmers spoke those
lines. This provides a valuable resource for the research com-
munity in developing accurate and robust language models
for spoken code.

2 RELATED WORK
Creating a voice programming system is challenging as it is much
more than simply dictating lines of code. Existing voice program-
ming systems such as Talon1 and Vocola2 require memorizing a
set of voice commands. Such an approach can be useful for dictat-
ing programming statements, but it may become challenging for
complex programs, as the number of commands increases. Using
natural language for voice-based programming could be less restric-
tive as it enables the use of conversational language which may
be learned and spoken more easily. In a previous study [14], we
conducted an interview with seven motor-impaired programmers
to understand their perceptions regarding programming by voice.
During the interview, programmers expressed their frustration with
current systems that require them to memorize a large number of
commands. Instead, they expressed a desire to speak code in a fex-
ible and natural manner with one programmer stating: “I guess it
would be more similar to the experience of pair programming with
someone.” The use of natural language may also reduce the learn-
ing curve required to understand spoken programming language,
making it easier for novices to learn code by voice.

2.1 Command-based Voice Programming
Arnold et al. [1] designed a command-based voice programming
system called VocalGenerator. VocalGenerator takes a Context Free
Grammar (CFG) and a voice vocabulary for a programming lan-
guage as input and generates a programming environment in which
users can write programs by voice. The system is no longer being
developed.

Maloku and Pllana [12] developed HyperCode which enables
coding in Java with voice commands in IntelliJ IDEA, a commercial
Java Integrated Development Environment (IDE). In addition, Hy-
perCode allows users to create their own custom voice commands.
In a user study, coding with a combination of keyboard, mouse, and

1https://talonvoice.com/
2http://vocola.net/

https://2http://vocola.net
https://1https://talonvoice.com

Programming by Voice: Exploring User Preferences and Speaking Styles CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

voice using Hypercode was faster (average 46 seconds) compared
to only keyboard and mouse (average 65 seconds) and only voice
input (average 84 seconds).

Rosenblatt et al. [18] conducted a Wizard of Oz study to explore
the commands programmers might use to write code. They also
developed a working prototype named VocalIDE. They evaluated
VocalIDE with participants having upper limb motor impairments.
The efciency of the system was limited by inadequate speech
recognition accuracy.

Mancodev [13] is an IDE designed to enter JavaScript by voice.
The system was evaluated with motor-impaired programmers, all
participants mentioned that speech recognition was slow and error-
prone.

Wagner et al. [24] developed Myna to make block-based visual
programming language accessible. Myna is a voice-driven interface
designed to enable motor-impaired children to learn to program
in Scratch3. In an evaluation, Myna took 15.6 seconds less time on
average than the mouse and keyboard [23]. However, non-native
English speakers made more errors while using Myna compared to
native English speakers.

Okafor and Ludi [15] also explored programming by voice in a
block-based visual programming language. They evaluated the use
of Google’s Blockly4 language by people with upper limb motor
impairments. According to their evaluation, the system was easy
to use but users found it hard to learn the predefned commands.
The authors concluded that more accurate speech recognition is
required as short commands like “in” or “up” were misrecognized
70% of the time.

Previous studies have focused on developing command-based
systems for voice programming, where programmers were required
to learn specifc grammar. Our approach difers in that we aim to
explore how programmers naturally speak code without being
constrained by grammar rules. We aim to understand the diverse
ways in which programmers speak code and did not want to impose
any limitations on their language usage.

2.2 Natural Language-Based Voice
Programming

Researchers have also investigated natural language systems for
voice programming. Price et al. conducted a Wizard of Oz study to
explore how people would use a voice interface for programming
[16]. The authors observed that novice programmers struggled to
describe their programs. But they were really excited about the
natural language programming interface.

Desilets [8] conducted a study to understand the challenges
involved in programming by voice such as dictating punctuation
and variable names with abbreviated words and items in mixed case.
The author later developed a tool named VoiceGrip that enabled
users to speak code using a pseudo-code syntax that was then
translated into native code. The system’s capabilities were restricted
to a manually created database containing mapping from native
symbols (e.g. “<”) to pseudo symbols (e.g. “less than”) and some
predefned rules to understand programming constructs.

3https://scratch.mit.edu
4https://developers.google.com/blockly

Brummelen et al. [22] conducted a user study where participants
completed novice and advanced programming tasks using only
voice input, using only text input, or using a combination of both.
They found that novices appreciated the use of natural language to
enter the program, supporting our belief that developing a system
allowing users to speak code naturally is a worthwhile goal.

Begel and Graham [3, 4] conducted a study to investigate how
programmers read Java code written on a piece of paper. The au-
thors found that all programmers spoke in a similar way despite
their programming experience but their speaking style varied a lot
depending on the programming construct. Based on their study,
they designed a system called Spoken Java using a rule-based ap-
proach to recognize spoken code. The system is based on a lexical
analyzer, which breaks down spoken commands into tokens, and a
semantic analyzer, which uses contextual information to determine
the meaning of the tokens. The author expressed concerns that their
approach might not refect all variations in spoken code as people
might speak diferently when they dictate code from scratch as
opposed to reading a pre-written bit of code aloud. This motivated
our investigation of collecting spoken code via two methods: one
where the speaker sees the code while speaking and another where
the speaker speaks code without seeing it.

Very few studies have been conducted on the natural language
use of programming by voice and no robust system currently exists.
One of the challenges with natural language-based programming is
that the system needs to be able to interpret a wide range of spoken
language variations. This is important because not everyone speaks
code in the same way, and a rigid system would limit the number of
people who could efectively use the spoken programming language.
We focus on a data-driven approach, allowing users to speak code
in a fexible and natural manner, similar to how you might speak
code in pair programming. Additionally, we investigate two data
collection approaches aiming to capture enough variability to train a
better language model for spoken code. We believe our work is a frst
step toward creating a robust and accessible voice programming
system.

2.3 Speech Recognition in Domains with Strict
Syntax

Advancements in speech recognition technology have made it ap-
plicable in a wide range of domains that require special symbols
or strict syntaxes, such as mathematics, SQL queries, and the legal
feld. One recent study by Song et al. proposed a novel architecture
named "SpeechSQLNet" that can directly translate human speech
into SQL queries without the need for external Automatic Speech
Recognition (ASR). Their research showed that the end-to-end ar-
chitecture outperformed the cascaded style of speech to SQL, which
frst converts speech signals into transcripts with an ASR system
and then conducts downstream text-to-SQL conversion.

Several software programs exist in the mathematics domain that
provides accessibility for motor-impaired users to dictate mathemat-
ical equations and formulas using speech recognition technology,
such as Math Speak & Write [9], MathSpeak [20], TalkMaths [25].
However, few studies have explored the use of voice-based tran-
scription in the legal domain [19]. Programming languages have
strict syntax and grammar rules that must be followed in order for

https://4https://developers.google.com/blockly
https://3https://scratch.mit.edu

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

the code to be executed correctly. For people with disabilities who
may have difculty typing or using a keyboard, speech recognition
technology can potentially make programming more accessible by
allowing them to dictate code instead of typing it.

3 USER STUDY
To collect examples of people speaking programs to a hypothetical
system, we conducted a remote user study. Participants completed
the study using their own computers and microphone. Novice pro-
grammers received extra credit in a course while expert program-
mers received a $20 Amazon gift card for completing the study.

3.1 Procedure
We created two sets of programs, each consisting of 20 identical Java
programs. In the frst one, the odd-numbered programs had missing
lines(s) and even-numbered programs had highlighted line(s). In the
second one, we reversed this. Participants were randomly assigned
to the frst version or the second one. Out of the 20 Java programs,
16 had single missing or single highlighted lines, while four had
multiple missing or highlighted lines of code. The single lines of
code included various code constructs, such as function calls, if-
else statements, loops, input-output statements, arrays, comments,
decrement operations, mathematical calculations, and variable dec-
larations. The multiline code snippets included an if-else block, a
for-loop block, a multiline comment, and a function body. Table 1
shows an example of a Java program with a missing line and high-
lighted line as used in our study. On average, the single-line and
the multi-line programming statements were 42 and 53 characters
in length respectively. All 20 programs were diferent and ranged
from 6 to 16 lines.

Using a web application, participants frst signed a consent form
and flled out a demographic questionnaire. At the beginning of the
experiment, participants were instructed as follows:

a) “Imagine you are a programmer who has an in-
jury. Typing on the keyboard is difcult for you. How
would you speak code to an intelligent computer pro-
gram that could convert your speech into code?”
b) “There are no rules in how you speak code.”

For each program, participants recorded themselves speaking
either the missing line(s) or highlighted line(s) of each program.
They did not receive any feedback while speaking but could play
back their recording afterward. Participants could re-record the
audio for a given program as many times as they wanted; we only
kept the last recording. Finally, they completed a questionnaire that
asked about their experience during the study.

3.2 Participants
We recruited 12 novice programmers (7 female, 5 male) from in-
troductory Java courses. We recruited 12 expert programmers (2
female, 10 male) through word-of-mouth. Experts were required to
have at least four years of programming experience and be familiar
with Java. Experts’ programming experience ranged from fve to
23 years.

All participants in both studies were native English Speakers.
As for their usage of speech interfaces, 8% of novices and 18% of

experts strongly agreed or agreed that they frequently used speech
interfaces. We asked participants how frequently they wrote pro-
grams. 58% of novice participants and all of the expert participants
strongly agreed or agreed that they frequently wrote programs.
The exact questionnaire we used is available in our supplementary
materials.

3.3 Data Analysis
We manually reviewed all collected recordings. Novice participants
often submitted empty recordings for the multi-line tasks which
we discarded. In total, we collected 224 audio fles (192 for single
lines, 32 for multi-lines) from the novices and 240 audio fles (192
for single lines, and 48 for multi-lines) from the experts. We listened
to each audio fle and typed a verbatim word-by-word transcript
of what the person said including spoken symbols, words, and
spaces. For example, “string very large string two equals quotation
mark world end quotation mark semicolon”. For both single and
multi-line programming statements, each recording is transcribed
into a one-line transcript. The human transcripts and the associ-
ated programming statements are available in our supplementary
materials.

4 USER STUDY RESULTS
Novices completed the experiment on average in 48 minutes (SD
= 8.8) while experts took 45 minutes (SD = 26.2). We split the par-
ticipants into novice and expert groups to analyze two measures:
speaking style and speaking rate in both the missing and high-
lighted conditions. Additionally, we investigated the variations of
speaking diferent programming constructs as well as the ambigu-
ity in spoken code. Finally, we analyzed participants’ subjective
feedback.

4.1 Speaking style: Natural versus literal
The two authors independently judged the speaking style of each
utterance in the transcripts and categorized each as either natu-
ral or literal. Prior to judging, authors discussed the criteria for
judgment and the defnition of natural and literal utterances. Ut-
terances were considered natural if participants spoke most parts
of the code using natural phrases (e.g. “start a comment”) instead
of literal adherence to the required characters (e.g. “forward slash
forward slash”). The two judges did not see each other’s ratings
beforehand. Inter-rater reliability was very high (Cohen’s kappa =
0.98), indicating an almost perfect agreement between the raters.
To ensure consistency, the authors then discussed their judgment
and resolved any disagreements.

A mixed analysis of variance (ANOVA) design was conducted
to investigate the efects of experience level (novice versus expert)
and conditions (missing versus highlighted) on the use of natural
language in code dictation. The results revealed no signifcant in-
teraction between experience level and condition (� (1, 22) = 3.04,
� = 0.09), indicating that the efect of condition did not difer sig-
nifcantly between expert and novice programmers. Furthermore,
there was no signifcant main efect of experience level on the use
of natural language (� (1, 22) = 1.82, � = 0.19), with expert program-
mers using natural language slightly more often than novices (62%
versus 45%, respectively). However, there was no signifcant main

Programming by Voice: Exploring User Preferences and Speaking Styles CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

Java program with a missing for-loop at line 8 Java program with a highlighted line at line 6

1 // Calculates the sum of first n
2 // natural numbers using a for loop
3 public static void main(String [] args) {
4 int n, i;
5 int sum = 0;
6 Scanner scan = new Scanner(System.in);
7 n = scan.nextInt ();
8
9 sum = sum + i;
10 }
11 System.out.println("Sum =" + sum);
12 }

1 //This program prints numbers from 10 to
1.

2 public static void main(String [] args) {
3 int largeNumCounter = 10;
4 while (largeNumCounter >= 1) {
5 System.out.println(largeNumCounter

);
6 largeNumCounter –;
7 }
8 return 0;
9 }

Table 1: Example of two Java programs from our user study. The left program has a missing line. The right program has a
highlighted line.

efect of condition on the use of natural language (� (1, 22) = 0.21, �
= 0.65). These fndings suggest that the use of natural language in
code dictation is not signifcantly infuenced by experience level
and that both novice and expert programmers are similarly afected
by the missing or highlighted conditions.

4.2 Verbalization by Programming Construct
We found wide variations in how certain programming constructs
and some specifc parts of code were verbalized. Most variations
occurred when speaking method declarations, user-defned names,
assignment operations, elements of an array, comments, abbrevi-
ated words, and punctuation.

4.2.1 Method signature and method call. The majority of the expert
programmers verbalized diferent parts of the method such as return
type, method name, and a parameter list naturally (e.g. “declare
function public static return type integer name cube parameter int
num”). In contrast, all but one novice programmer spoke methods
in a literal way (e.g. “public static integer cube open paren int num
close paren”).

4.2.2 User-defined names. While dictating user-defned names
such as variable and method names, two expert programmers men-
tioned naming conventions (e.g. “camel case very large string”)
while one expert spelled them out. Five other experts and three
novices verbalized capitalization (e.g. “large capital n num capital c
counter”). We also observed that expert programmers occasionally
said the term “variable” while dictating a variable name.

4.2.3 Comments. As comments are written in natural language,
we wanted to see how participants switched between the syntax
required to denote a comment and the comment itself. All experts
but only 30% of novices started a comment by speaking “open
comment”, “header comment” or “comment”. The other novice par-
ticipants spoke comments by verbalizing “slash slash” or “forward
slash forward slash”. 80% of the experts explicitly mentioned if their
intent was a single-line or multi-line comment.

0

25

50

75

100

Missing Highlighted

P
e
rc

e
n
ta

g
e
 o

f
s
p
e
a
k
in

g
 n

a
tu

ra
lly

Novice Expert

Figure 1: Comparison of speaking naturally in the missing
and highlighted conditions.

4.2.4 Abbreviated words. Abbreviated words were either spoken
as full words or spelled out. 80% of experts and novices verbalized
the function sqrt as “square root” while others spelled it out. Two
expert programmers verbalized the full form for an abbreviated
variable name, for example, saying “number” instead of “num”.
Additionally, 90% of the experts and 40% of the novices verbalized
the function println naturally as “print line” while others spoke
it as “print l n”.

4.2.5 Assignment operation. 70% of experts used phrases such as
“is assigned” or “becomes” or “set” instead of verbalizing the “equal”
symbol. for instance, one expert uttered the variable assignment i
= 1 as “i is assigned one”. None of the novices used such natural
phrases for assignment operation.

4.2.6 Multi-line code. We had programmers speak four multi-line
programs. Our aim was to explore how participants might verbalize
a block of code including, for example, specifying the transition
to a new line. The majority of experts uttered phrases like “new

https://Scanner(System.in

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

Metric Condition / Participant Mixed ANOVA
Speaking Style Novice Expert

Speaking rate (wpm) missing 84.0±10.13 [55.4, 111.6] 95.2±16.72 [44.5, 137.7] � (1, 22) = 1.20, � = 0.29
highlighted 92.7±10.63 [74.3, 123.0] 105.8±16.32 [59.4, 148.1] highlighted > missing, � = 0.0003

natural 98.9±14.31 [66.8, 133.9] 99.5±17.62 [48.0, 136.4] � (1, 18) = 0.181, � = 0.68
literal 85.1±10.28 [60.0, 118.5] 89.1±12.97 [61.2, 135.3] novice: natural > literal, � = 0.02

Proportion of speaking naturally (%) missing 51.1±21.22 [0, 100] 40.8±20.69 [0, 100] � (1, 22) = 3.04, � = 0.09
highlighted 58.2±20.11 [0, 100] 36.7±17.29 [0, 100] no signifcant pairs

Table 2: Numerical results from the user study including the statistical test details. Result format: mean ± 95% CI [min, max]

line”, “enter”, “begin body”, or “start for loop body” to transition to
a new line. None of the novices explicitly uttered any term for a
new line, instead, they dictated the entire block of code as if it were
on a single line (e.g. “static int cube int num end parenthesis curly
bracket return num times num times num curly bracket”).

4.2.7 Symbols and punctuation. We found signifcat variations
in spoken punctuation. Experts who spoke naturally used some
natural phrases for punctuation, for instance, two experts uttered
“end line” instead of “semicolon”. In addition, eight experts and
three novices dictated array elements as “items at location i”, “items
at index i” or “items sub i” while the other participants dictated
them in a literal way (e.g. “items open square bracket i close square
bracket”).

Participants used a variety of terms to refer to the quote symbol,
including natural terms like “character” or “string” as well as more
specifc terms like “quote”, “single quote”, “opening quote”, “end
quote”, “quotation marks”. Additionally, participants spoke paren-
theses in varied ways such as “paren”, “left parenthesis”, “open
parenthesis”, and “close parenthesis”. Variation also occurred in
speaking brackets or braces, e.g. “left curly brace”, “open curly
brace”, “close curly brace”, “curly bracket” or “bracket”.

In a few cases, participants uttered the same punctuation difer-
ently even in the same line. Participants who spoke in a literal way
had a tendency to omit punctuation in both highlighted and miss-
ing conditions. We considered all single-line literal utterances and
calculated the proportion of spoken punctuation in the transcript
to actual punctuation in the target code. It is noteworthy that only
participants who spoke syntactically at least 50% of the time in both
conditions were included in the analysis, which consisted of eight
novices and three experts. Overall, participants spoke parentheses
83% of the time in the highlighted condition versus 72% of the time
in the missing condition. Interestingly, participants verbalized quo-
tation marks 100% of the time in the highlighted condition but only
42% of the time in the missing condition. In the case of semicolons,
participants spoke fewer in the missing condition (60% of the time)
compared to the highlighted condition (69% of the time). This sug-
gests two potential explanations for the diferences in punctuation
use. First, it is possible that participants struggled to balance out
the parentheses or quotes when they could not see the line of code,
leading to a decrease in their use of punctuation. Second, it is possi-
ble, participants anticipated that an intelligent voice programming
system would auto-complete the missing punctuation, leading them
to rely less on their own use of these punctuation marks.

4.3 Correctness and Semantic Ambiguity
We suspected participants might sometimes speak incorrect code
(i.e. code that does not achieve the program’s stated objective). This
could occur especially often when participants could not see the
line. The two authors independently categorized each spoken single
line of code as either correct or incorrect. Utterances were consid-
ered incorrect when the spoken code was incomplete, incorrect, or
ambiguous. Inter-rater reliability was high (Cohen’s kappa = 0.88),
indicating close agreement between the raters. To ensure consis-
tency, we reviewed our ratings and resolved any disagreements.

We calculated the proportion of participants’ incorrect spoken
code. Overall, novices spoke incorrect lines 16% of the time while
experts spoke incorrect lines 7% of the time. As might be expected,
participants spoke more incorrect code in the missing condition
than in the highlighted condition. Novices spoke incorrect lines 28%
of the time in the missing condition but only 4% in the highlighted
condition. Similarly, experts spoke incorrect lines 12% of the time
in the missing condition but only 2% in the highlighted condition.

We observed that the incorrect spoken programs in the high-
lighted condition were a result of unclear or ambiguous speaking
patterns. We felt a voice programming system might have difculty
accurately transcribing such speech. For example, a few partici-
pants spoke the line of code “result=Math.sqrt(x+y)/z” as “re-
sult equals math dot square root x plus y divided by z”. Without
mentioning the order of arithmetic operations, the system might
interpret this as “x+y/z”. While some participants mentioned the
order explicitly, for example saying “result equals math dot square
root open paren x plus y close paren divided by z”.

Some participants failed to specify whether a line of spoken
code included a digit or a character. This particularly occurred in
the conditional statement “c <= ′ 9 ′” in which participants simply
spoke it as “if c less than or equal to nine”. We also observed a
few participants mistakenly spoke “backslash” while dictating a
comment instead of “forward slash”. Additionally, we observed that
some participants did not specify whether a line of spoken code
was a comment, but instead spoke just the comment’s text. Such
ambiguity or lack of context may lead to an inaccurate machine
translation of the spoken code to its target code.

4.4 Speaking Rate
We trimmed silence from the start and end of the recordings and
calculated the speaking rate of an utterance in words per minute
(wpm). As we did not have enough multi-line code from novices,

Programming by Voice: Exploring User Preferences and Speaking Styles CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

Target code
items[i] = scan.nextInt();

Programmer
novice

Human Transcript
items square bracket i end square bracket equals
scan dot next int semicolon

largeNumCounter–;
expert
novice

items at location i is equal to scan dot next int
large num counter minus minus semicolon

while (num >= 1)
expert
novice

decrement large num counter
while parenthesis num is greater than or equal to one
end parenthesis quotation

total = calculate_sum(age,5);

expert

novice

start while loop start condition num is greater than or
equal to one end condition end while loop
total equals calculate underscore sum open parenthesis age
comma five close parenthesis semicolon

/**
*Calculate the area of a square
*@param s side of the square
*@return area of the square
*/

expert

novice

expert

variable total is equal to method calculate sum where the
first argument is variable age and the second argument
is the number five
java doc calculates the area of a square
at param s side of the square at return area of the square

start multiline comment new line calculates the area of a
square new line at param s side of a square new line at
return area of a square new line end multiline comment

Table 3: Some examples of the variations in the speech of novice and expert programmers.

we analyzed only the single lines. In the transcripts, there were
about 18 words per missing line and 19 words per highlighted line
on average.

A mixed ANOVA analysis revealed no signifcant interaction
between experience level and condition (� (1, 22) = 0.18, � = 0.67) on
speaking rate. There was no signifcant main efect of experience
level on the speaking rate (� (1, 22) = 1.20, � = 0.29). However, there
was a signifcant main efect of condition on the speaking rate
(� (1, 22) = 18.87, � = 0.0003). Posthoc pairwise comparisons with
Bonferroni corrections revealed that experts spoke signifcantly
faster in the highlighted condition than in the missing condition (�
= 0.004). Similarly, novices spoke signifcantly faster in highlighted
versus missing (� = 0.002) (Table 2). It might be the case that the
increased cognitive demands of mentally visualizing the target line
based on the surrounding code may have required additional time,
resulting in a slower speaking rate when participants could not see
the line.

We also calculated the speaking rate of novices and experts when
speaking naturally versus when they spoke in a literal manner. We
excluded participants who always spoke naturally (one novice and
two experts) or always spoke in a literal manner (one novice). This
resulted in a sample of ten novices and ten experts. We found
no signifcant interaction between experience levels and speaking
styles on the speaking rate (� (1, 18) = 0.181, � = 0.68). There was
no signifcant main efect of experience level (� (1, 18) = 0.071, �
= 0.79), but there was a signifcant main efect of speaking style
on the speaking rate (� (1, 18) = 9.231, � = 0.007). Posthoc pairwise
comparisons with Bonferroni corrections indicated that novices

50

75

100

125

150

Missing Highlighted

S
p
e
a
k
in

g
 r

a
te

 (
w

p
m

)

Novice Expert

50

75

100

125

150

Natural Literal

S
p
e
a
k
in

g
 r

a
te

 (
w

p
m

)

Novice Expert

(a) Missing versus highlighted (b) Natural versus Literal

Figure 2: Comparison of speaking rate.

had a signifcantly faster speaking rate when speaking naturally
compared to speaking in a literal manner (� = 0.02), while there was
no signifcant diference in speaking rate between the two styles for
experts (� = 0.14). This suggests that the efect of speaking style on
speaking rate did not difer signifcantly between novice and expert
speakers but the way in which novice participants spoke afected
their speaking rate. It might be the case that following strict rules
of grammar and syntax imposed additional cognitive demands on
novices which slowed down their speaking rate compared to a more
natural speaking style.

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

4.5 Subjective Feedback
Participants rated fve statements about their overall experience
with the study on a 7-point Likert scale (1=strongly disagree, 7=
strongly agree). Experts’ ratings showed a signifcant diference
(�2 (3) = 111.3, � = 0.00001). Posthoc pairwise comparisons with
Bonferroni adjustment revealed that experts found it signifcantly
easier to speak a single highlighted line (mean = 6.2, SD = 1.4)
compared to a single missing line (mean = 4.8, SD = 1.6) (� = 0.0002).
There were no signifcant diferences in their ratings for the ease of
speaking a single missing line (mean = 4.8, SD = 1.8) versus multiple
missing lines (mean = 3.5, SD = 1.7), between single highlighted
line versus multiple highlighted lines (� = 0.13), or between single
missing lines versus multiple missing lines (� = 0.4).

A signifcant diference was also found in novices’ ratings (�2 (3)
= 121.7, � < 0.000002). Posthoc pairwise comparisons revealed sig-
nifcant diferences in their ratings for the ease of speaking a single
highlighted line (mean = 6.2, SD = 1.4) versus a single missing line
(mean = 4.8, SD = 1.6), as well as for the ease of speaking multiple
highlighted lines (mean = 5.2, SD =1.5) versus multiple missing
lines (3.4, SD = 1.4). However, there were no signifcant diferences
in their ratings for the ease of speaking a single missing line versus
multiple missing lines (� = 0.3), or between a single highlighted
line versus multiple highlighted lines (� = 0.3).

In general, both novices and experts found speaking a missing
line challenging, but novices faced more difculty in speaking mul-
tiple missing lines. One expert said “It is more difcult to make code
that is nontrivial from scratch as opposed to reading a line that
already exists”. Speaking missing lines of code seems practical and
relevant as in the context of an actual voice programming system,
people may need to describe code without being able to see it or may
only have partial context. However, verbalizing missing code does
require more cognitive efort. Although we provided participants
with some context in the form of comments (e.g. “This program
reads ten integers from standard input into an array named items”)
in both highlighted and missing conditions, it is worth noting that
such context may introduce biases as participants might rely heavily
on the provided information. One expert participant acknowledged
that he was biased, “When reading comments I had a temptation to
want to follow the comment that was provided”. This suggests that
an efective data collection methodology for spoken code needs to
balance the benefts and drawbacks of speaking missing lines to
ensure reliable data while also taking steps to avoid biasing the
programmer to one particular solution.

We asked participants about the ease of the programs. All ex-
perts and all but one novice found the programs easy to understand.
When asked about the parts of programs they were most uncertain
about how to dictate, novices and experts had difering opinions. All
experts and three novices indicated that dictating function declara-
tions was the hardest. One expert said “I was most uncertain about
method keywords, for example how to diferentiate diferent parts
of the method declaration”. None of the novices but fve expert pro-
grammers thought dictating variables was really challenging. One
expert said “It’s complicated to fgure out how to speak variable
names when considering issues like capitalization and whether to
spell out an identifer”.

Some participants were uncertain about whether to dictate punc-
tuation, and they believed that an intelligent voice programming
IDE should auto-complete punctuation, especially when it comes to
balancing braces and parentheses. According to a novice program-
mer, “I was uncertain mostly what punctuation I needed to state
directly and what could be auto-completed”. This suggests further
investigation is required to overcome the challenges in dictating
difcult parts of code such as method declarations, variable names,
and punctuation.

A few expert programmers shared additional comments on how
an intelligent voice programming tool should work in general. One
expert said “I started of very literal but pretty soon realized that
would be an unmanageable way to code and started assuming a
smarter model. For instance, typically Java style is to camel case
variable names so I assumed that should be the default interpreta-
tion”. Another expert programmer noted “There is a lot of nuance
to simple code such as Math.sqrt(x+y). Although it’s very short and
simple to spell out, I found it really challenging to try to express it
in a command-type way”. These insights support our approach of
collecting data by asking participants to speak code without impos-
ing any rules, as it enables the system to account for the diverse
ways in which people might speak code. For instance, an intelligent
system should be able to recognize the function sqrt regardless
of whether it is spelled out letter-by-letter or spoken naturally as
“square root”.

5 RECOGNIZING SPOKEN PROGRAMS
We conducted three ofine recognition experiments on our collected
data. The goal of the frst experiment was to measure recognition
accuracy on spoken code using a state-of-the-art commercial speech
recognizer. The second experiment was conducted to compare data
collected in the missing condition versus highlighted condition. The
goal of the third experiment was to see whether accuracy could be
improved by adapting the language model by gradually augmenting
the number of transcripts of spoken code.

5.1 Recognition with Base Model
In the frst experiment, we recognized our audio recordings with
Google Cloud Speech-to-Text5 service. We used a web API to rec-
ognize each audio fle. As test data, we used 224 recordings from
the novice study (after discarding incomplete recordings) and all
240 recordings from the expert study. We submitted audio using
16-bit linear encoding at a sampling rate of 16 kHz.

5.2 Language Model Adaptation
In the second experiment, we used Google’s language model adap-
tation feature to test the recognition accuracy. We adapted the lan-
guage model by incorporating transcripts from unseen programs
spoken by unseen users, which were not part of the test data. In
order to investigate recognition accuracy on unseen users’ speech,
we conducted a leave-one-participant-out cross-validation which is
a modifed form of k-fold cross-validation where each fold excluded
one participant’s data. We adapted the model using the unseen
adaptation data from all participants except for one and tested it
on that selected participant. The aim was to evaluate the adapted

5https://cloud.google.com/speech-to-text

https://cloud.google.com/speech-to-text

Programming by Voice: Exploring User Preferences and Speaking Styles CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

0%

0%

17%

25%

58%

92%

92%

75%

58%

33%

8%

8%

8%

17%

8%

I found the programs were easy to understand

I found speaking multiple missing lines easy

I found speaking a single missing line easy

I found speaking multiple highlighted lines easy

I found speaking a single highlighted line easy

100 50 0 50 100
Percentage

strongly disagree disagree slightly disagree neutral slightly agree agree strongly agree

(a) Feedback from novices

0%

8%

17%

25%

50%

100%

92%

75%

67%

25%

0%

0%

8%

8%

25%

I found the programs were easy to understand

I found speaking multiple missing lines easy

I found speaking a single missing line easy

I found speaking multiple highlighted lines easy

I found speaking a single highlighted line easy

100 50 0 50 100
Percentage

strongly disagree disagree slightly disagree neutral slightly agree agree strongly agree

(b) Feedback from experts

Figure 3: Novice participant feedback (top) and expert participant feedback (bottom). The percentages on the left are the portion
of participants who strongly disagreed, disagreed, or slightly disagreed with the statements. The percentages in the middle
correspond to the portion who were neutral. The percentages on the right correspond to those who strongly agreed, agreed, or
slightly agreed.

language model’s ability to learn new programs spoken by new
users. We repeated this process for each of the 24 participants.

5.2.1 Creating the adaptation dataset. To ensure that there is no
overlap between adaptation and test data, we split the transcripts
into two sets– the frst half contains transcripts associated with the
frst ten programs and the second half from the last ten programs.
Each set provided a sufcient number of each of our distinct pro-
gramming constructs such as loops, if-else statements, expression
statements, arrays, comments, and functions.

Google’s model adaptation requires a set of unique phrases in
order to improve the model’s recognition of those particular words
or phrases. To create this set, we generated diferent n-grams from
the adaptation transcripts ranging from bigrams (e.g. “left paren”)
to 12-grams (e.g. for i equal to zero i less than fve i plus plus).
Bigrams to 12-grams were chosen for adaptation dataset creation
as they met the limits of Google’s speech-to-text adaptation API
(5000 maximum phrases per request, 100,000 characters per re-
quest, and 100 characters per phrase). We found that the bigrams
yielded the best recognition accuracy and selected it for further
experimentation. We believe thew reason for this is that frequently
repeated phrases or keywords like “system dot”, “int i”, “plus plus”,
and “open paren” are more common in spoken code transcripts
than complete sentences. As a result, bigrams are more efective
in capturing these repeated phrases and keywords compared to
higher order n-grams which may detect more complex and infre-
quent patterns. Furthermore, the use of higher n-grams leads to an

increase in the complexity and computational cost of the model,
which can be impractical for larger datasets.

5.2.2 Comparing missing versus highlighted adaptation data. We
wanted to investigate the impact on adaptation of collecting data
in the missing and highlighted conditions. To do this, we adapted
the model by taking transcripts from either the missing lines or
the highlighted lines. Afterward, we conducted the leave-one-out
experiments on each of these sets. For example, to recognize P1’s
frst ten spoken programs, we adapted the model with missing line
transcripts from the last ten programs of all participants except for
P1.

5.2.3 Amount of adaptation data. We explored the efect of gradu-
ally increasing the amount of adaptation data from 25%, 50%, 75%,
and fnally, 100% on the improvement in recognition accuracy. For
this, we created adaptation sets by randomly sampling 25%, 50%,
and 75% missing transcripts combined with 25%, 50%, and 75% high-
lighted transcripts respectively, and fnally 100% of the transcripts.
We repeated the random sampling ten times and took the average.

5.3 Evaluation
We used simple heuristic rules to post-process the recognition
results from Google’s recognizer by converting all numbers and
symbols into corresponding words. This was to ensure the recogni-
tion error rate could be fairly computed against our human tran-
scriptions (in which our protocol was to spell out all numbers and
symbols). We then calculated the Word Error Rate (WER) for the

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

Novice Expert

0% 25%
(106)

50%
(212)

75%
(318)

100%
(444)

0% 25%
(106)

50%
(212)

75%
(318)

100%
(444)

0

5

10

15

20

25

30

35

40

Amount of transcipts

W
E

R
(%

)

Figure 4: Comparison of Word Error Rate (WER) using in-
creasing amounts of adaptation transcripts for the novices
(left) and the experts (right). The mean value is marked as a
red triangle. The x-axis shows the percentage of transcripts
used followed by the exact number of lines in parentheses.

post-processed recognition results using our human transcriptions
as the reference. WER was calculated by summing the number of
insertions, deletions, and substitutions that occurred in the recog-
nition result compared to the reference transcript, dividing by the
number of words in the reference, and multiplying by 100.

5.4 Results
The baseline model had a high WER of 28.29%, for novices and
23.13%, for experts (Table 4). Adapting the language model on tran-
scripts from just the highlighted condition provided similar im-
provements to using just transcripts from the missing condition.
This suggests that both conditions provide enough variations in
spoken code to facilitate the language model’s learning.

Adding a progressive amount of transcripts yields a substantial
reduction in error rate. As shown in Figure 4, the WER signifcantly
drops with only 25% of the adaptation transcripts, 19% relative to
the baseline. Adding in more transcripts provided a slight reduction
in error rate, though gains began to diminish. It is possible that the
model is already able to capture most of the relevant patterns and
information from the data, so adding more data did not provide as
much beneft. On average, across all participants, adapting with
100% transcripts reduced WER by 27% relative to the baseline.

Table 5 shows some examples of target lines of code, our human
reference transcripts, recognition results using the base model from
Google, and recognition results using language model adaptation on
100% of the transcripts. Model adaptation improved the recognition
of homophones such as “for” versus “four”, “i” versus “eye”, “u”
versus “you” and “two” versus “to”. Recognition of “for”, “i”, “u” and
“two” were improved by 70%, 74%, 8%, and 9% relative respectively,
indicating that the model learned the context in which these words
were used.

Language model adaptation with all transcripts (444 lines)
yielded a WER of 19% (averaged across participants). This means
that nearly one in every fve words spoken was not accurately
recognized by the system. This level of performance is not ideal
for a speech recognizer, especially when compared to the lower
WERs achieved in recent years for natural language [2]. Addition-
ally, the words that do not occur in natural language such as “int”
and “num” were frequently misrecognized (99% and 74% of the time,
respectively) even after adapting the model. This limitation could be
addressed by incorporating more domain-specifc language into the
training data or by using a diferent language model that is specif-
ically tailored to technical language. Furthermore, the fact that
the gains in accuracy began to diminish as more transcripts were
added indicates that there are other factors that are limiting the
system’s accuracy, such as the sophistication of Google’s language
model adaptation algorithm, the quality of the acoustic models,
or the robustness of the system to diferent accents and speaking
styles. These limitations highlight the need for future research to
explore alternative approaches that can improve the accuracy and
robustness of speech recognition systems in the domain of spoken
code.

6 DISCUSSION
Today’s educational and work landscape requires people to be
well-versed in computational thinking, ideally with at least some
exposure to programming. Programming is already a cognitively
demanding task, adding additional demands only creates additional
barriers to entry. Further, novice programmers, or even experts
moving between languages, can struggle with the syntactic minutia
of a particular language. Our user studies focused on a simple and,
we argue, core part of programming by voice, namely the input
of common statement types. Rather than imposing a prescriptive
grammar for writing such statements, we instead observed how
both novice and expert programmers would like to be able to speak
such statements. The advantage of our approach is that if we can
support fexible and more natural speaking of code, we may ease
or eliminate the need for programmers to memorize a complicated
set of commands.

Our current approach was to have people record themselves
speaking code to a hypothetical system. It could be that a person’s
speaking style changes when interacting with a real system. Lack-
ing a real system, one could instead collect audio via a Wizard
of Oz approach. However, we think a more signifcant problem is
collecting a larger and more diverse set of data. This data should
include programmers with motor impairments, a wider range of
programming constructs, and languages beyond Java. While many
languages share similar programming constructs, the details of a
specifc language may require additional support for certain pur-
poses (e.g. how to specify indentation in Python).

In our user studies, we asked programmers to speak a single
line or a small section of code. People may speak diferently when
creating an entire program from scratch, when creating more dif-
cult programs, or when using more advanced language constructs.
While it might be desirable to support generating blocks of code
from a single utterance (e.g. “create a for-loop that prints all the

Programming by Voice: Exploring User Preferences and Speaking Styles CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

Adaptation Data
Programming experience

Novice Expert

None (baseline) 28.29±3.0 23.13±2.0

All missing transcripts
All highlighted transcripts

22.75±2.0
23.00±2.0

18.92±2.0
17.96±2.0

25% missing + 25% highlighted transcripts
50% missing + 50% highlighted transcripts
75% missing + 75% highlighted transcripts

23.33±2.0
22.46±2.0
21.75±2.0

18.67±2.0
18.12±2.0
17.63±2.0

All missing and highlighted transcripts 20.79±2.0 17.04±2.0

Table 4: Word error rate (WER) using Google speech recognizer. ± values represent sentence-wise bootstrap 95% confdence
intervals.

Target code

String veryLargeString2="world";

Transcript

human
base model
adapted model

Text

string very large string two equals world
string very large string to equals world
string very large string two equals world

while(num>=1)

human
base model
adapted model

human
base model
adapted model

string space very large string two equals quote world quote
bring space very large string two equals quote world quote
string space very large string two equals quote world quote

while num greater than equal to one
well none greater than equal to one
while none greater than equal to one

for(int i=1; i<=n; i++)

human
base model
adapted model

human
base model
adapted model

while loop condition num greater than zero end condition left bracket
while loop condition none greater than zero and condition lock bracket
while loop condition num greater than zero and condition left bracket

for int i equals one i is less than or equals to n i plus plus
four plus two is equals one i is less than or equal to n high bus bus
for and i equals one i is less than or equal to n i plus plus

largeNumCounter–;

human
base model
adapted model

human
base model
adapted model

for i equals one i less than or equal to n i plus plus
four equals one i less than or equal to an eye plus twelve
four equals one i less than or equal to n i plus plus

large num counter minus minus
large and dumb counter minus minus
large num counter minus minus

human
base model
adapted model

decrement large num counter
decrement large and i am connor
decrement large num counter

Table 5: Recognition results used the base model and the adapted model on 100% of the transcripts. Recognition errors are
highlighted in red and underlined.

prime numbers in array nums”), it may not always align with pro- Related, even single lines of code in some cases can be quite long.
grammers’ needs and preferences. Novice programmers or even This may require an interface that incrementally displays a partially
experienced programmers may prefer to speak a single line of code completed line code as the user speaks. This introduces the addi-
when they want to make an edit or modifcation to an existing tional challenge of recognizing an utterance specifying only part
codebase, rather than generating a large block of code from a single of a statement and also converting this utterance to an incomplete
utterance. We think supporting robust entry of individual lines is a line of code.
necessary frst step prior to considering the input of larger blocks.

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands Sadia Nowrin and Keith Vertanen

Existing code corpora [7, 10] are sourced from written code.
While these corpora can be useful for tasks like code summariza-
tion, code suggestion, and code generation, they are not well-suited
for training a system to transcribe spoken code line-by-line. Our
collected data maps each line of a human transcript with the corre-
sponding target code. To our knowledge, this is the frst work to
build a spoken program corpus of this nature.

While we were able to reduce WER by 27% relative to the baseline
(no adaptation) with our modest amount of transcribed spoken
code, we reached a plateau. One potential solution is to use transfer
learning and fne-tune a large pre-trained model on a small amount
of data. This approach would allow the model to better understand
the nuances and variations in spoken code where we have full
control of the acoustic and language model rather than using a
commercial service as we did here. In addition, individuals might
have specifc preferences for programming such as formatting and
naming conventions. The language model may perform better if
conditioned on surrounding code or on a programmer’s preferred
coding style. Another future research direction would be to adapt to
individual programming styles by incorporating user feedback into
the system. The system can track and learn from the programmer’s
feedback over time, allowing it to continually improve its ability to
recognize an individual’s coding style.

We found both novices and experts spoke in a natural way as
well as in a literal way. Using natural language prompts for code
generation is becoming increasingly popular and can help make
programming more accessible and intuitive for a wider range of
people. However, there can be issues with ambiguity and confusion
in natural language prompts, which can lead to incorrect code being
generated. For example, a prompt like "fnd the most similar items
in a collection" could be ambiguous without specifying how to
defne the most similar. By analyzing our collected data of both
natural and literal spoken code, we can investigate which style
enables the model to better understand and interpret programmer
prompts. Further research is required to investigate ways to fne-
tune LLMs to better adapt to the individual coding styles of diferent
programmers. By doing so, the generated code could better match
the programmer’s preferred formatting and syntax choices, leading
to more seamless integration with their existing codebase.

Our study revealed that both novice and expert programmers
did not exhibit a diferent speaking style in the missing versus
highlighted condition, but they did speak faster in the highlighted
condition. This could be attributed to the reduced cognitive demand
in speaking the presented code, as opposed to generating code from
scratch in the missing line condition. Moreover, novices skipped
speaking the missing lines of code may be because they lacked
knowledge. However, when designing a data collection methodol-
ogy, it is important to carefully consider the task’s goals and ob-
jectives and the trade-ofs between diferent approaches. A hybrid
approach that combines both missing and highlighted conditions
may help balance the trade-of between realism and cognitive load,
resulting in a more comprehensive dataset that accurately refects
the demands of coding tasks while enabling faster data collection.
Moreover, providing additional context and guidance for novices,
such as prompts or hints, may improve data validity by helping
them generate code more efectively.

Scaling up from our relatively small corpus poses a number
of challenges. First, data needs to be collected from people with
at least some programming experience, a relatively small portion
of the population that is expensive to recruit. Second, it is time-
consuming to transcribe the utterances. This could perhaps be made
more efcient by having people (e.g. crowdsourced workers) correct
automatically generated transcripts of the utterances. However, this
would require reasonably accurate recognition in the frst place
to be faster than typing the transcript from scratch. Third, even
with large amounts of data, it may be challenging to model the
commonalities in spoken code when they involve unconstrained
tokens (e.g. variable names in a for-loop statement).

7 CONCLUSION
As speech recognition technology continues to improve, it is likely
that voice programming systems will become increasingly preva-
lent and accessible. In this study, we provided valuable insights
into the challenges of developing such a system. Regardless of
the experience, programmers tended to speak faster using natural
language, thus motivating the need for a naturally spoken program-
ming system. We found standard speech recognizers had a high
error rate due to the mismatch between the written English they
were trained on and how people speak code. However, even using
the modest number of examples of spoken code we collected, we
showed recognition errors could be reduced. Our study demon-
strated the trade-of between the realism of the task and cognitive
demand, which is important for researchers to consider when de-
signing experiments and selecting data collection methodologies.
By understanding this trade-of, researchers can make informed
decisions about the most appropriate method for collecting data
that aligns with their research goals. Overall, our fndings can in-
form the design of future voice programming systems that takes
into account diverse ways in which programmers might speak code,
making the system more accessible to a wider range of users.

ACKNOWLEDGMENTS
This work was supported in part by a Google Faculty award.

REFERENCES
[1] Stephen C Arnold, Leo Mark, and John Goldthwaite. 2000. Programming by voice,

VocalProgramming. In Proceedings of the fourth international ACM conference on
Assistive technologies. ACM, 149–155.

[2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. 2020.
wav2vec 2.0: A framework for self-supervised learning of speech representations.
Advances in neural information processing systems 33 (2020), 12449–12460.

[3] Andrew Begel and Susan L Graham. 2005. Spoken programs. In 2005 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05).
IEEE, 99–106.

[4] Andrew Begel and Susan L Graham. 2006. An Assessment of a Speech-Based
Programming Environment. In Visual LAnguages and Human-Centric Computing
(VL/HCC’06). IEEE, 116–120.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Programming by Voice: Exploring User Preferences and Speaking Styles

[8] Alain Désilets. 2001. VoiceGrip: A Tool for Programming-by-Voice. International
Journal of Speech Technology 4, 2 (2001), 103–116.

[9] Cassandra Guy, Michael Jurka, Steven Stanek, and Richard Fateman. 2004. Math
speak & write, a computer program to read and hear mathematical input. Uni-
versity of California Berkeley (2004).

[10] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv e-prints (2019), arXiv–1909.

[11] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of naacL-HLT, Vol. 1. 2.

[12] Rinor S Maloku and Besart Xh Pllana. 2016. HyperCode: Voice aided program-
ming. IFAC-PapersOnLine 49, 29 (2016), 263–268.

[13] Jonathan Giovanni Soto Muñoz, Arturo Iván de Casso Verdugo, Eliseo Geraldo
González, Jesús Andrés Sandoval Bringas, and Miguel Parra Garcia. 2019. Pro-
gramming by Voice Assistance Tool for Physical Impairment Patients Classifed
in to Peripheral Neuropathy Centered on Arms or Hands Movement Difculty. In
2019 International Conference on Inclusive Technologies and Education (CONTIE).
IEEE, 210–2107.

[14] Sadia Nowrin, Patricia Ordóñez, and Keith Vertanen. 2022. Exploring Motor-
Impaired Programmers’ Use of Speech Recognition. In Proceedings of the 24th
International ACM SIGACCESS Conference on Computers and Accessibility (Athens,
Greece) (ASSETS ’22). Association for Computing Machinery, New York, NY, USA,
Article 78, 4 pages. https://doi.org/10.1145/3517428.3550392

[15] Obianuju Okafor and Stephanie Ludi. 2022. Voice-Enabled Blockly: Usability Im-
pressions of a Speech-driven Block-based Programming System. In Proceedings of
the 24th International ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS ’22). 1–5.

[16] David E Price, DA Dahlstrom, Ben Newton, and Joseph L Zachary. 2002. Of to
See the Wizard: using a" Wizard of Oz" study to learn how to design a spoken
language interface for programming. In 32nd Annual Frontiers in Education, Vol. 1.

CUI ’23, July 19–21, 2023, Eindhoven, Netherlands

IEEE, T2G–T2G.
[17] Alec Radford, Jefrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[18] Lucas Rosenblatt, Patrick Carrington, Kotaro Hara, and Jefrey P Bigham. 2018.
Vocal Programming for People with Upper-Body Motor Impairments. In Proceed-
ings of the Internet of Accessible Things. ACM, 30.

[19] Hadeel Saadany, Constantin Orăsan, and Catherine Breslin. 2022. Better Tran-
scription of UK Supreme Court Hearings. arXiv preprint arXiv:2211.17094 (2022).

[20] Waseem Sheikh, Dave Schleppenbach, and Dennis Leas. 2018. MathSpeak: a
non-ambiguous language for audio rendering of MathML. International Journal
of Learning Technology 13, 1 (2018), 3–25.

[21] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[22] Jessica Van Brummelen, Kevin Weng, Phoebe Lin, and Catherine Yeo. 2020.
CONVO: What does conversational programming need?. In 2020 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 1–5.

[23] Amber Wagner and Jef Gray. 2015. An empirical evaluation of a vocal user inter-
face for programming by voice. International Journal of Information Technologies
and Systems Approach (IJITSA) 8, 2 (2015), 47–63.

[24] Amber Wagner, Ramaraju Rudraraju, Srinivasa Datla, Avishek Banerjee, Mandar
Sudame, and Jef Gray. 2012. Programming by Voice: A Hands-Free Approach
for Motorically Challenged Children. In CHI ’12 Extended Abstracts on Human
Factors in Computing Systems (Austin, Texas, USA) (CHI EA ’12). Association for
Computing Machinery, New York, NY, USA, 2087–2092. https://doi.org/10.1145/
2212776.2223757

[25] Angela M Wigmore, Gordon JA Hunter, Eckhard Pfügel, and James Denholm-
Price. 2009. TalkMaths: A speech user interface for dictating mathematical
expressions into electronic documents. In International workshop on speech and
language technology in education.

https://doi.org/10.1145/3517428.3550392
https://doi.org/10.1145/2212776.2223757
https://doi.org/10.1145/2212776.2223757

	Abstract
	1 Introduction
	2 Related Work
	2.1 Command-based Voice Programming
	2.2 Natural Language-Based Voice Programming
	2.3 Speech Recognition in Domains with Strict Syntax

	3 User Study
	3.1 Procedure
	3.2 Participants
	3.3 Data Analysis

	4 User Study Results
	4.1 Speaking style: Natural versus literal
	4.2 Verbalization by Programming Construct
	4.3 Correctness and Semantic Ambiguity
	4.4 Speaking Rate
	4.5 Subjective Feedback

	5 Recognizing Spoken Programs
	5.1 Recognition with Base Model
	5.2 Language Model Adaptation
	5.3 Evaluation
	5.4 Results

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

