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ABSTRACT 
Programming by voice is a potentially useful method for individu-
als with motor impairments. Spoken programs can be challenging 
for a standard speech recognizer with a language model trained 
on written text mined from sources such as web pages. Having an 
efective language model that captures the variability in spoken pro-
grams may be necessary for accurate recognition. In this work, we 
explore how novice and expert programmers speak code without 
requiring them to adhere to strict grammar rules. We investigate 
two approaches to collect data by having programmers speak ei-
ther highlighted or missing lines of code. We observed that expert 
programmers spoke more naturally, while novice programmers 
spoke more syntactically. A commercial speech recognizer had a 
high error rate on our spoken programs. However, by adapting the 
recognizer’s language model with our spoken code transcripts, we 
were able to substantially reduce the error rate by 27% relative to 
the baseline on unseen spoken code. 
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1 INTRODUCTION 
Software development is a text input and text editing intensive 
activity typically performed using a keyboard and a mouse. Such 
reliance can present a signifcant barrier for individuals with motor 
impairments who want to learn to program or pursue careers in 
technology-related felds. This can be especially discouraging for 
novices who are trying to enter the feld of programming. Addi-
tionally, even experienced software engineers can develop motor 
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impairments such as a repetitive stress injury (RSI) due to the pro-
longed use of these input devices. Using voice to create code can be 
an alternative approach to traditional text-based programming, po-
tentially improving the accessibility and efciency of programming 
for individuals with motor impairments. 

One possible architecture for a voice programming system would 
consist of two components. The frst component would be a speech 
recognizer that converts a user’s code utterances into the literal 
words spoken (e.g. “increment num words by one”). The second 
component would be a machine translation model that converts the 
recognized text into the target language and preferred coding style 
(e.g. “numWords++;”). This translation model could additionally be 
guided by a model that is aware of the target programming language 
grammar and any constraints introduced by the current location in 
the program (e.g. which variables are in scope). This two-part archi-
tecture has the advantage that diferent machine translation models 
could be swapped in for diferent target programming languages. 
We anticipate the speech recognition component would require 
minimal changes for diferent programming languages since the 
acoustic properties and vocabulary used may strongly overlap be-
tween languages. This may be particularly true when users speak 
code naturally (i.e. without explicitly dictating the literal characters 
needed by a given language). We focus on the frst component in 
this paper. 

Classically, a speech recognizer works by frst converting a user’s 
spoken sounds into possible words using an acoustic model. It 
then searches for the most probable sequence of words guided by 
a language model. Modern neural speech recognizers may use a 
more end-to-end approach, taking sound as the input and directly 
outputting letters or words. However, neural recognizers often 
still incorporate a language model to rescore hypotheses since a 
language model can be trained on large amounts of just text. While 
there is a wealth of data to train accurate language models for 
tasks such as writing emails, no such data exists for speaking code. 
Collecting a large amount of data for a new domain such as spoken 
code is challenging due to the variability in how programmers 
speak code and the complexity of programming syntax. 

As a frst step to supporting fexible and robust code input by 
voice, we explore variations in spoken code, aiming to understand 
diferent speaking styles and the potential ambiguities that can arise. 
Our primary goals were to 1) capture a range of user variability, 
and 2) develop a dataset of spoken code in order to train a language 
model to improve speech recognition accuracy. We wanted to better 
understand if programmers speak code naturally or in a literal 
manner, whether they skip symbols, spell things out, or explicitly 
denote cases. For example, consider the Java statement: “items[i] 
= 5;”. Would programmers explicitly speak symbols such as square 
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brackets or semicolons? Would they speak in a more pseudo-code 
style? For example, the programmer could just say “assign items at 
location i to fve”. The latter is attractive as it might allow learning 
a shared vernacular for common statements in diferent languages, 
allowing programmers to more easily learn or switch between 
languages. 

While large language models (LLMs) [5, 6, 11, 17] have the ability 
to generate a code block from a text prompt, they may not always 
be accurate or correct [21]. This is because LLMs heavily rely on 
the training data used to build them. If the training data is not repre-
sentative of the types of code being generated or is limited in scope, 
the LLM may not perform well in accurately generating code. For 
instance, a general-purpose programming language-trained model 
may struggle to generate accurate code for specialized domains 
like machine learning or cryptography. In such cases, it may be 
necessary to manually correct individual lines or sections of the 
generated code. While LLM-generated code can be a powerful tool 
for programmers, it may not align with programmers’ preferred 
workfow or coding style. Depending on the task at hand, a pro-
grammer may prefer to write code line-by-line or by breaking a 
task down into smaller, more manageable pieces. Additionally, pro-
grammers may not always write code in a linear fashion. They may 
jump back and forth between diferent sections of code or may 
modify previously written lines of code. Speaking code line-by-line 
may allow programmers to have more control over the code they 
are creating and ensure that it meets their specifc requirements. 

LLMs can help automate routine or repetitive coding tasks, free-
ing up programmers’ time to focus on more complex or creative 
aspects of coding. However, for novices, relying too heavily on 
LLMs to generate a whole code block could limit their ability to 
learn coding concepts and develop problem-solving skills. For learn-
ers, it may be more benefcial to learn to code line-by-line, building 
up their knowledge gradually and reinforcing their understand-
ing of each individual concept before moving on to more complex 
topics. Additionally, for experts, relying too heavily on LLMs to 
generate code could lead to a reduction in their coding skills and 
ability to write code manually. This could be detrimental to their 
long-term career prospects and could also limit their ability to iden-
tify and fx errors in auto-generated code. In this work, we aim 
to investigate how programmers speak individual lines or small 
segments of code. 

A secondary goal of our user studies was to compare how par-
ticipants spoke missing lines of code (the target line of code was 
blank) versus how they spoke highlighted lines of code (the target 
line of code was specifed). Speaking missing code is closer to the 
actual cognitive task of programming by voice while speaking high-
lighted lines would likely be quicker and easier but could result in a 
fundamentally diferent speaking style. The purpose of evaluating 
these two scenarios was to see which one would be most efective 
for scaling up the data collection process. To understand if our col-
lected data can enhance the speech recognition system’s accuracy, 
we performed ofine experiments using a commercial speech rec-
ognizer (Google Cloud Speech-to-Text). We adapted the language 
model on our collected spoken code, which helped reduce the word 
error rate (WER) by 27% relative. This shows the promise of improv-
ing recognition accuracy via changes to the speech recognizer’s 
underlying language model. 

Our work makes the following contributions: 

(1) Our primary contribution is that we provide novel perspec-
tives into how diverse programmers speak code (i.e. without 
teaching them a specifc grammar). This can help inform the 
design of more efective and robust voice-based systems. 

(2) We conduct the frst comparison of two possible approaches 
in collecting spoken code. These approaches involved speak-
ing a missing line of code and speaking a highlighted line of 
code. We further identify which approach is more efective in 
capturing the necessary variations and developing accurate 
language models for spoken code. 

(3) We demonstrate how our collected data can be used to im-
prove the accuracy of a speech recognizer, highlighting the 
importance of improving recognition accuracy in this do-
main. 

(4) We release the frst data set containing individual lines of 
code and the transcripts of how programmers spoke those 
lines. This provides a valuable resource for the research com-
munity in developing accurate and robust language models 
for spoken code. 

2 RELATED WORK 
Creating a voice programming system is challenging as it is much 
more than simply dictating lines of code. Existing voice program-
ming systems such as Talon1 and Vocola2 require memorizing a 
set of voice commands. Such an approach can be useful for dictat-
ing programming statements, but it may become challenging for 
complex programs, as the number of commands increases. Using 
natural language for voice-based programming could be less restric-
tive as it enables the use of conversational language which may 
be learned and spoken more easily. In a previous study [14], we 
conducted an interview with seven motor-impaired programmers 
to understand their perceptions regarding programming by voice. 
During the interview, programmers expressed their frustration with 
current systems that require them to memorize a large number of 
commands. Instead, they expressed a desire to speak code in a fex-
ible and natural manner with one programmer stating: “I guess it 
would be more similar to the experience of pair programming with 
someone.” The use of natural language may also reduce the learn-
ing curve required to understand spoken programming language, 
making it easier for novices to learn code by voice. 

2.1 Command-based Voice Programming 
Arnold et al. [1] designed a command-based voice programming 
system called VocalGenerator. VocalGenerator takes a Context Free 
Grammar (CFG) and a voice vocabulary for a programming lan-
guage as input and generates a programming environment in which 
users can write programs by voice. The system is no longer being 
developed. 

Maloku and Pllana [12] developed HyperCode which enables 
coding in Java with voice commands in IntelliJ IDEA, a commercial 
Java Integrated Development Environment (IDE). In addition, Hy-
perCode allows users to create their own custom voice commands. 
In a user study, coding with a combination of keyboard, mouse, and 

1https://talonvoice.com/
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voice using Hypercode was faster (average 46 seconds) compared 
to only keyboard and mouse (average 65 seconds) and only voice 
input (average 84 seconds). 

Rosenblatt et al. [18] conducted a Wizard of Oz study to explore 
the commands programmers might use to write code. They also 
developed a working prototype named VocalIDE. They evaluated 
VocalIDE with participants having upper limb motor impairments. 
The efciency of the system was limited by inadequate speech 
recognition accuracy. 

Mancodev [13] is an IDE designed to enter JavaScript by voice. 
The system was evaluated with motor-impaired programmers, all 
participants mentioned that speech recognition was slow and error-
prone. 

Wagner et al. [24] developed Myna to make block-based visual 
programming language accessible. Myna is a voice-driven interface 
designed to enable motor-impaired children to learn to program 
in Scratch3. In an evaluation, Myna took 15.6 seconds less time on 
average than the mouse and keyboard [23]. However, non-native 
English speakers made more errors while using Myna compared to 
native English speakers. 

Okafor and Ludi [15] also explored programming by voice in a 
block-based visual programming language. They evaluated the use 
of Google’s Blockly4 language by people with upper limb motor 
impairments. According to their evaluation, the system was easy 
to use but users found it hard to learn the predefned commands. 
The authors concluded that more accurate speech recognition is 
required as short commands like “in” or “up” were misrecognized 
70% of the time. 

Previous studies have focused on developing command-based 
systems for voice programming, where programmers were required 
to learn specifc grammar. Our approach difers in that we aim to 
explore how programmers naturally speak code without being 
constrained by grammar rules. We aim to understand the diverse 
ways in which programmers speak code and did not want to impose 
any limitations on their language usage. 

2.2 Natural Language-Based Voice 
Programming 

Researchers have also investigated natural language systems for 
voice programming. Price et al. conducted a Wizard of Oz study to 
explore how people would use a voice interface for programming 
[16]. The authors observed that novice programmers struggled to 
describe their programs. But they were really excited about the 
natural language programming interface. 

Desilets [8] conducted a study to understand the challenges 
involved in programming by voice such as dictating punctuation 
and variable names with abbreviated words and items in mixed case. 
The author later developed a tool named VoiceGrip that enabled 
users to speak code using a pseudo-code syntax that was then 
translated into native code. The system’s capabilities were restricted 
to a manually created database containing mapping from native 
symbols (e.g. “<”) to pseudo symbols (e.g. “less than”) and some 
predefned rules to understand programming constructs. 

3https://scratch.mit.edu 
4https://developers.google.com/blockly 

Brummelen et al. [22] conducted a user study where participants 
completed novice and advanced programming tasks using only 
voice input, using only text input, or using a combination of both. 
They found that novices appreciated the use of natural language to 
enter the program, supporting our belief that developing a system 
allowing users to speak code naturally is a worthwhile goal. 

Begel and Graham [3, 4] conducted a study to investigate how 
programmers read Java code written on a piece of paper. The au-
thors found that all programmers spoke in a similar way despite 
their programming experience but their speaking style varied a lot 
depending on the programming construct. Based on their study, 
they designed a system called Spoken Java using a rule-based ap-
proach to recognize spoken code. The system is based on a lexical 
analyzer, which breaks down spoken commands into tokens, and a 
semantic analyzer, which uses contextual information to determine 
the meaning of the tokens. The author expressed concerns that their 
approach might not refect all variations in spoken code as people 
might speak diferently when they dictate code from scratch as 
opposed to reading a pre-written bit of code aloud. This motivated 
our investigation of collecting spoken code via two methods: one 
where the speaker sees the code while speaking and another where 
the speaker speaks code without seeing it. 

Very few studies have been conducted on the natural language 
use of programming by voice and no robust system currently exists. 
One of the challenges with natural language-based programming is 
that the system needs to be able to interpret a wide range of spoken 
language variations. This is important because not everyone speaks 
code in the same way, and a rigid system would limit the number of 
people who could efectively use the spoken programming language. 
We focus on a data-driven approach, allowing users to speak code 
in a fexible and natural manner, similar to how you might speak 
code in pair programming. Additionally, we investigate two data 
collection approaches aiming to capture enough variability to train a 
better language model for spoken code. We believe our work is a frst 
step toward creating a robust and accessible voice programming 
system. 

2.3 Speech Recognition in Domains with Strict 
Syntax 

Advancements in speech recognition technology have made it ap-
plicable in a wide range of domains that require special symbols 
or strict syntaxes, such as mathematics, SQL queries, and the legal 
feld. One recent study by Song et al. proposed a novel architecture 
named "SpeechSQLNet" that can directly translate human speech 
into SQL queries without the need for external Automatic Speech 
Recognition (ASR). Their research showed that the end-to-end ar-
chitecture outperformed the cascaded style of speech to SQL, which 
frst converts speech signals into transcripts with an ASR system 
and then conducts downstream text-to-SQL conversion. 

Several software programs exist in the mathematics domain that 
provides accessibility for motor-impaired users to dictate mathemat-
ical equations and formulas using speech recognition technology, 
such as Math Speak & Write [9], MathSpeak [20], TalkMaths [25]. 
However, few studies have explored the use of voice-based tran-
scription in the legal domain [19]. Programming languages have 
strict syntax and grammar rules that must be followed in order for 

https://4https://developers.google.com/blockly
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the code to be executed correctly. For people with disabilities who 
may have difculty typing or using a keyboard, speech recognition 
technology can potentially make programming more accessible by 
allowing them to dictate code instead of typing it. 

3 USER STUDY 
To collect examples of people speaking programs to a hypothetical 
system, we conducted a remote user study. Participants completed 
the study using their own computers and microphone. Novice pro-
grammers received extra credit in a course while expert program-
mers received a $20 Amazon gift card for completing the study. 

3.1 Procedure 
We created two sets of programs, each consisting of 20 identical Java 
programs. In the frst one, the odd-numbered programs had missing 
lines(s) and even-numbered programs had highlighted line(s). In the 
second one, we reversed this. Participants were randomly assigned 
to the frst version or the second one. Out of the 20 Java programs, 
16 had single missing or single highlighted lines, while four had 
multiple missing or highlighted lines of code. The single lines of 
code included various code constructs, such as function calls, if-
else statements, loops, input-output statements, arrays, comments, 
decrement operations, mathematical calculations, and variable dec-
larations. The multiline code snippets included an if-else block, a 
for-loop block, a multiline comment, and a function body. Table 1 
shows an example of a Java program with a missing line and high-
lighted line as used in our study. On average, the single-line and 
the multi-line programming statements were 42 and 53 characters 
in length respectively. All 20 programs were diferent and ranged 
from 6 to 16 lines. 

Using a web application, participants frst signed a consent form 
and flled out a demographic questionnaire. At the beginning of the 
experiment, participants were instructed as follows: 

a) “Imagine you are a programmer who has an in-
jury. Typing on the keyboard is difcult for you. How 
would you speak code to an intelligent computer pro-
gram that could convert your speech into code?” 
b) “There are no rules in how you speak code.” 

For each program, participants recorded themselves speaking 
either the missing line(s) or highlighted line(s) of each program. 
They did not receive any feedback while speaking but could play 
back their recording afterward. Participants could re-record the 
audio for a given program as many times as they wanted; we only 
kept the last recording. Finally, they completed a questionnaire that 
asked about their experience during the study. 

3.2 Participants 
We recruited 12 novice programmers (7 female, 5 male) from in-
troductory Java courses. We recruited 12 expert programmers (2 
female, 10 male) through word-of-mouth. Experts were required to 
have at least four years of programming experience and be familiar 
with Java. Experts’ programming experience ranged from fve to 
23 years. 

All participants in both studies were native English Speakers. 
As for their usage of speech interfaces, 8% of novices and 18% of 

experts strongly agreed or agreed that they frequently used speech 
interfaces. We asked participants how frequently they wrote pro-
grams. 58% of novice participants and all of the expert participants 
strongly agreed or agreed that they frequently wrote programs. 
The exact questionnaire we used is available in our supplementary 
materials. 

3.3 Data Analysis 
We manually reviewed all collected recordings. Novice participants 
often submitted empty recordings for the multi-line tasks which 
we discarded. In total, we collected 224 audio fles (192 for single 
lines, 32 for multi-lines) from the novices and 240 audio fles (192 
for single lines, and 48 for multi-lines) from the experts. We listened 
to each audio fle and typed a verbatim word-by-word transcript 
of what the person said including spoken symbols, words, and 
spaces. For example, “string very large string two equals quotation 
mark world end quotation mark semicolon”. For both single and 
multi-line programming statements, each recording is transcribed 
into a one-line transcript. The human transcripts and the associ-
ated programming statements are available in our supplementary 
materials. 

4 USER STUDY RESULTS 
Novices completed the experiment on average in 48 minutes (SD 
= 8.8) while experts took 45 minutes (SD = 26.2). We split the par-
ticipants into novice and expert groups to analyze two measures: 
speaking style and speaking rate in both the missing and high-
lighted conditions. Additionally, we investigated the variations of 
speaking diferent programming constructs as well as the ambigu-
ity in spoken code. Finally, we analyzed participants’ subjective 
feedback. 

4.1 Speaking style: Natural versus literal 
The two authors independently judged the speaking style of each 
utterance in the transcripts and categorized each as either natu-
ral or literal. Prior to judging, authors discussed the criteria for 
judgment and the defnition of natural and literal utterances. Ut-
terances were considered natural if participants spoke most parts 
of the code using natural phrases (e.g. “start a comment”) instead 
of literal adherence to the required characters (e.g. “forward slash 
forward slash”). The two judges did not see each other’s ratings 
beforehand. Inter-rater reliability was very high (Cohen’s kappa = 
0.98), indicating an almost perfect agreement between the raters. 
To ensure consistency, the authors then discussed their judgment 
and resolved any disagreements. 

A mixed analysis of variance (ANOVA) design was conducted 
to investigate the efects of experience level (novice versus expert) 
and conditions (missing versus highlighted) on the use of natural 
language in code dictation. The results revealed no signifcant in-
teraction between experience level and condition (� (1, 22) = 3.04, 
� = 0.09), indicating that the efect of condition did not difer sig-
nifcantly between expert and novice programmers. Furthermore, 
there was no signifcant main efect of experience level on the use 
of natural language (� (1, 22) = 1.82, � = 0.19), with expert program-
mers using natural language slightly more often than novices (62% 
versus 45%, respectively). However, there was no signifcant main 
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Java program with a missing for-loop at line 8 Java program with a highlighted line at line 6 

1 // Calculates the sum of first n 
2 // natural numbers using a for loop 
3 public static void main(String [] args) { 
4 int n, i; 
5 int sum = 0; 
6 Scanner scan = new Scanner(System.in); 
7 n = scan.nextInt (); 
8 
9 sum = sum + i; 
10 } 
11 System.out.println("Sum =" + sum); 
12 } 

1 //This program prints numbers from 10 to 
1. 

2 public static void main(String [] args) { 
3 int largeNumCounter = 10; 
4 while (largeNumCounter >= 1) { 
5 System.out.println(largeNumCounter 

); 
6 largeNumCounter –; 
7 } 
8 return 0; 
9 } 

Table 1: Example of two Java programs from our user study. The left program has a missing line. The right program has a 
highlighted line. 

efect of condition on the use of natural language (� (1, 22) = 0.21, � 
= 0.65). These fndings suggest that the use of natural language in 
code dictation is not signifcantly infuenced by experience level 
and that both novice and expert programmers are similarly afected 
by the missing or highlighted conditions. 

4.2 Verbalization by Programming Construct 
We found wide variations in how certain programming constructs 
and some specifc parts of code were verbalized. Most variations 
occurred when speaking method declarations, user-defned names, 
assignment operations, elements of an array, comments, abbrevi-
ated words, and punctuation. 

4.2.1 Method signature and method call. The majority of the expert 
programmers verbalized diferent parts of the method such as return 
type, method name, and a parameter list naturally (e.g. “declare 
function public static return type integer name cube parameter int 
num”). In contrast, all but one novice programmer spoke methods 
in a literal way (e.g. “public static integer cube open paren int num 
close paren”). 

4.2.2 User-defined names. While dictating user-defned names 
such as variable and method names, two expert programmers men-
tioned naming conventions (e.g. “camel case very large string”) 
while one expert spelled them out. Five other experts and three 
novices verbalized capitalization (e.g. “large capital n num capital c 
counter”). We also observed that expert programmers occasionally 
said the term “variable” while dictating a variable name. 

4.2.3 Comments. As comments are written in natural language, 
we wanted to see how participants switched between the syntax 
required to denote a comment and the comment itself. All experts 
but only 30% of novices started a comment by speaking “open 
comment”, “header comment” or “comment”. The other novice par-
ticipants spoke comments by verbalizing “slash slash” or “forward 
slash forward slash”. 80% of the experts explicitly mentioned if their 
intent was a single-line or multi-line comment. 
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Figure 1: Comparison of speaking naturally in the missing 
and highlighted conditions. 

4.2.4 Abbreviated words. Abbreviated words were either spoken 
as full words or spelled out. 80% of experts and novices verbalized 
the function sqrt as “square root” while others spelled it out. Two 
expert programmers verbalized the full form for an abbreviated 
variable name, for example, saying “number” instead of “num”. 
Additionally, 90% of the experts and 40% of the novices verbalized 
the function println naturally as “print line” while others spoke 
it as “print l n”. 

4.2.5 Assignment operation. 70% of experts used phrases such as 
“is assigned” or “becomes” or “set” instead of verbalizing the “equal” 
symbol. for instance, one expert uttered the variable assignment i 
= 1 as “i is assigned one”. None of the novices used such natural 
phrases for assignment operation. 

4.2.6 Multi-line code. We had programmers speak four multi-line 
programs. Our aim was to explore how participants might verbalize 
a block of code including, for example, specifying the transition 
to a new line. The majority of experts uttered phrases like “new 
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Metric Condition / Participant Mixed ANOVA 
Speaking Style Novice Expert 

Speaking rate (wpm) missing 84.0±10.13 [55.4, 111.6] 95.2±16.72 [44.5, 137.7] � (1, 22) = 1.20, � = 0.29 
highlighted 92.7±10.63 [74.3, 123.0] 105.8±16.32 [59.4, 148.1] highlighted > missing, � = 0.0003 

natural 98.9±14.31 [66.8, 133.9] 99.5±17.62 [ 48.0, 136.4] � (1, 18) = 0.181, � = 0.68 
literal 85.1±10.28 [60.0, 118.5] 89.1±12.97 [ 61.2, 135.3] novice: natural > literal, � = 0.02 

Proportion of speaking naturally (%) missing 51.1±21.22 [0, 100] 40.8±20.69 [0, 100] � (1, 22) = 3.04, � = 0.09 
highlighted 58.2±20.11 [0, 100] 36.7±17.29 [0, 100] no signifcant pairs 

Table 2: Numerical results from the user study including the statistical test details. Result format: mean ± 95% CI [min, max] 

line”, “enter”, “begin body”, or “start for loop body” to transition to 
a new line. None of the novices explicitly uttered any term for a 
new line, instead, they dictated the entire block of code as if it were 
on a single line (e.g. “static int cube int num end parenthesis curly 
bracket return num times num times num curly bracket”). 

4.2.7 Symbols and punctuation. We found signifcat variations 
in spoken punctuation. Experts who spoke naturally used some 
natural phrases for punctuation, for instance, two experts uttered 
“end line” instead of “semicolon”. In addition, eight experts and 
three novices dictated array elements as “items at location i”, “items 
at index i” or “items sub i” while the other participants dictated 
them in a literal way (e.g. “items open square bracket i close square 
bracket”). 

Participants used a variety of terms to refer to the quote symbol, 
including natural terms like “character” or “string” as well as more 
specifc terms like “quote”, “single quote”, “opening quote”, “end 
quote”, “quotation marks”. Additionally, participants spoke paren-
theses in varied ways such as “paren”, “left parenthesis”, “open 
parenthesis”, and “close parenthesis”. Variation also occurred in 
speaking brackets or braces, e.g. “left curly brace”, “open curly 
brace”, “close curly brace”, “curly bracket” or “bracket”. 

In a few cases, participants uttered the same punctuation difer-
ently even in the same line. Participants who spoke in a literal way 
had a tendency to omit punctuation in both highlighted and miss-
ing conditions. We considered all single-line literal utterances and 
calculated the proportion of spoken punctuation in the transcript 
to actual punctuation in the target code. It is noteworthy that only 
participants who spoke syntactically at least 50% of the time in both 
conditions were included in the analysis, which consisted of eight 
novices and three experts. Overall, participants spoke parentheses 
83% of the time in the highlighted condition versus 72% of the time 
in the missing condition. Interestingly, participants verbalized quo-
tation marks 100% of the time in the highlighted condition but only 
42% of the time in the missing condition. In the case of semicolons, 
participants spoke fewer in the missing condition (60% of the time) 
compared to the highlighted condition (69% of the time). This sug-
gests two potential explanations for the diferences in punctuation 
use. First, it is possible that participants struggled to balance out 
the parentheses or quotes when they could not see the line of code, 
leading to a decrease in their use of punctuation. Second, it is possi-
ble, participants anticipated that an intelligent voice programming 
system would auto-complete the missing punctuation, leading them 
to rely less on their own use of these punctuation marks. 

4.3 Correctness and Semantic Ambiguity 
We suspected participants might sometimes speak incorrect code 
(i.e. code that does not achieve the program’s stated objective). This 
could occur especially often when participants could not see the 
line. The two authors independently categorized each spoken single 
line of code as either correct or incorrect. Utterances were consid-
ered incorrect when the spoken code was incomplete, incorrect, or 
ambiguous. Inter-rater reliability was high (Cohen’s kappa = 0.88), 
indicating close agreement between the raters. To ensure consis-
tency, we reviewed our ratings and resolved any disagreements. 

We calculated the proportion of participants’ incorrect spoken 
code. Overall, novices spoke incorrect lines 16% of the time while 
experts spoke incorrect lines 7% of the time. As might be expected, 
participants spoke more incorrect code in the missing condition 
than in the highlighted condition. Novices spoke incorrect lines 28% 
of the time in the missing condition but only 4% in the highlighted 
condition. Similarly, experts spoke incorrect lines 12% of the time 
in the missing condition but only 2% in the highlighted condition. 

We observed that the incorrect spoken programs in the high-
lighted condition were a result of unclear or ambiguous speaking 
patterns. We felt a voice programming system might have difculty 
accurately transcribing such speech. For example, a few partici-
pants spoke the line of code “result=Math.sqrt(x+y)/z” as “re-
sult equals math dot square root x plus y divided by z”. Without 
mentioning the order of arithmetic operations, the system might 
interpret this as “x+y/z”. While some participants mentioned the 
order explicitly, for example saying “result equals math dot square 
root open paren x plus y close paren divided by z”. 

Some participants failed to specify whether a line of spoken 
code included a digit or a character. This particularly occurred in 
the conditional statement “c <= ′ 9 ′” in which participants simply 
spoke it as “if c less than or equal to nine”. We also observed a 
few participants mistakenly spoke “backslash” while dictating a 
comment instead of “forward slash”. Additionally, we observed that 
some participants did not specify whether a line of spoken code 
was a comment, but instead spoke just the comment’s text. Such 
ambiguity or lack of context may lead to an inaccurate machine 
translation of the spoken code to its target code. 

4.4 Speaking Rate 
We trimmed silence from the start and end of the recordings and 
calculated the speaking rate of an utterance in words per minute 
(wpm). As we did not have enough multi-line code from novices, 
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Target code 
items[i] = scan.nextInt(); 

Programmer 
novice 

Human Transcript 
items square bracket i end square bracket equals 
scan dot next int semicolon 

largeNumCounter–; 
expert 
novice 

items at location i is equal to scan dot next int 
large num counter minus minus semicolon 

while (num >= 1) 
expert 
novice 

decrement large num counter 
while parenthesis num is greater than or equal to one 
end parenthesis quotation 

total = calculate_sum(age,5); 

expert 

novice 

start while loop start condition num is greater than or 
equal to one end condition end while loop 
total equals calculate underscore sum open parenthesis age 
comma five close parenthesis semicolon 

/** 
*Calculate the area of a square 
*@param s side of the square 
*@return area of the square 
*/ 

expert 

novice 

expert 

variable total is equal to method calculate sum where the 
first argument is variable age and the second argument 
is the number five 
java doc calculates the area of a square 
at param s side of the square at return area of the square 

start multiline comment new line calculates the area of a 
square new line at param s side of a square new line at 
return area of a square new line end multiline comment 

Table 3: Some examples of the variations in the speech of novice and expert programmers. 

we analyzed only the single lines. In the transcripts, there were 
about 18 words per missing line and 19 words per highlighted line 
on average. 

A mixed ANOVA analysis revealed no signifcant interaction 
between experience level and condition (� (1, 22) = 0.18, � = 0.67) on 
speaking rate. There was no signifcant main efect of experience 
level on the speaking rate (� (1, 22) = 1.20, � = 0.29). However, there 
was a signifcant main efect of condition on the speaking rate 
(� (1, 22) = 18.87, � = 0.0003). Posthoc pairwise comparisons with 
Bonferroni corrections revealed that experts spoke signifcantly 
faster in the highlighted condition than in the missing condition (� 
= 0.004). Similarly, novices spoke signifcantly faster in highlighted 
versus missing (� = 0.002) (Table 2). It might be the case that the 
increased cognitive demands of mentally visualizing the target line 
based on the surrounding code may have required additional time, 
resulting in a slower speaking rate when participants could not see 
the line. 

We also calculated the speaking rate of novices and experts when 
speaking naturally versus when they spoke in a literal manner. We 
excluded participants who always spoke naturally (one novice and 
two experts) or always spoke in a literal manner (one novice). This 
resulted in a sample of ten novices and ten experts. We found 
no signifcant interaction between experience levels and speaking 
styles on the speaking rate (� (1, 18) = 0.181, � = 0.68). There was 
no signifcant main efect of experience level (� (1, 18) = 0.071, � 
= 0.79), but there was a signifcant main efect of speaking style 
on the speaking rate (� (1, 18) = 9.231, � = 0.007). Posthoc pairwise 
comparisons with Bonferroni corrections indicated that novices 
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Figure 2: Comparison of speaking rate. 

had a signifcantly faster speaking rate when speaking naturally 
compared to speaking in a literal manner (� = 0.02), while there was 
no signifcant diference in speaking rate between the two styles for 
experts (� = 0.14). This suggests that the efect of speaking style on 
speaking rate did not difer signifcantly between novice and expert 
speakers but the way in which novice participants spoke afected 
their speaking rate. It might be the case that following strict rules 
of grammar and syntax imposed additional cognitive demands on 
novices which slowed down their speaking rate compared to a more 
natural speaking style. 
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4.5 Subjective Feedback 
Participants rated fve statements about their overall experience 
with the study on a 7-point Likert scale (1=strongly disagree, 7= 
strongly agree). Experts’ ratings showed a signifcant diference 
(�2 (3) = 111.3, � = 0.00001). Posthoc pairwise comparisons with 
Bonferroni adjustment revealed that experts found it signifcantly 
easier to speak a single highlighted line (mean = 6.2, SD = 1.4) 
compared to a single missing line (mean = 4.8, SD = 1.6) (� = 0.0002). 
There were no signifcant diferences in their ratings for the ease of 
speaking a single missing line (mean = 4.8, SD = 1.8) versus multiple 
missing lines (mean = 3.5, SD = 1.7), between single highlighted 
line versus multiple highlighted lines (� = 0.13), or between single 
missing lines versus multiple missing lines (� = 0.4). 

A signifcant diference was also found in novices’ ratings (�2 (3)
= 121.7, � < 0.000002). Posthoc pairwise comparisons revealed sig-
nifcant diferences in their ratings for the ease of speaking a single 
highlighted line (mean = 6.2, SD = 1.4) versus a single missing line 
(mean = 4.8, SD = 1.6), as well as for the ease of speaking multiple 
highlighted lines (mean = 5.2, SD =1.5) versus multiple missing 
lines (3.4, SD = 1.4). However, there were no signifcant diferences 
in their ratings for the ease of speaking a single missing line versus 
multiple missing lines (� = 0.3), or between a single highlighted 
line versus multiple highlighted lines (� = 0.3). 

In general, both novices and experts found speaking a missing 
line challenging, but novices faced more difculty in speaking mul-
tiple missing lines. One expert said “It is more difcult to make code 
that is nontrivial from scratch as opposed to reading a line that 
already exists”. Speaking missing lines of code seems practical and 
relevant as in the context of an actual voice programming system, 
people may need to describe code without being able to see it or may 
only have partial context. However, verbalizing missing code does 
require more cognitive efort. Although we provided participants 
with some context in the form of comments (e.g. “This program 
reads ten integers from standard input into an array named items”) 
in both highlighted and missing conditions, it is worth noting that 
such context may introduce biases as participants might rely heavily 
on the provided information. One expert participant acknowledged 
that he was biased, “When reading comments I had a temptation to 
want to follow the comment that was provided”. This suggests that 
an efective data collection methodology for spoken code needs to 
balance the benefts and drawbacks of speaking missing lines to 
ensure reliable data while also taking steps to avoid biasing the 
programmer to one particular solution. 

We asked participants about the ease of the programs. All ex-
perts and all but one novice found the programs easy to understand. 
When asked about the parts of programs they were most uncertain 
about how to dictate, novices and experts had difering opinions. All 
experts and three novices indicated that dictating function declara-
tions was the hardest. One expert said “I was most uncertain about 
method keywords, for example how to diferentiate diferent parts 
of the method declaration”. None of the novices but fve expert pro-
grammers thought dictating variables was really challenging. One 
expert said “It’s complicated to fgure out how to speak variable 
names when considering issues like capitalization and whether to 
spell out an identifer”. 

Some participants were uncertain about whether to dictate punc-
tuation, and they believed that an intelligent voice programming 
IDE should auto-complete punctuation, especially when it comes to 
balancing braces and parentheses. According to a novice program-
mer, “I was uncertain mostly what punctuation I needed to state 
directly and what could be auto-completed”. This suggests further 
investigation is required to overcome the challenges in dictating 
difcult parts of code such as method declarations, variable names, 
and punctuation. 

A few expert programmers shared additional comments on how 
an intelligent voice programming tool should work in general. One 
expert said “I started of very literal but pretty soon realized that 
would be an unmanageable way to code and started assuming a 
smarter model. For instance, typically Java style is to camel case 
variable names so I assumed that should be the default interpreta-
tion”. Another expert programmer noted “There is a lot of nuance 
to simple code such as Math.sqrt(x+y). Although it’s very short and 
simple to spell out, I found it really challenging to try to express it 
in a command-type way”. These insights support our approach of 
collecting data by asking participants to speak code without impos-
ing any rules, as it enables the system to account for the diverse 
ways in which people might speak code. For instance, an intelligent 
system should be able to recognize the function sqrt regardless 
of whether it is spelled out letter-by-letter or spoken naturally as 
“square root”. 

5 RECOGNIZING SPOKEN PROGRAMS 
We conducted three ofine recognition experiments on our collected 
data. The goal of the frst experiment was to measure recognition 
accuracy on spoken code using a state-of-the-art commercial speech 
recognizer. The second experiment was conducted to compare data 
collected in the missing condition versus highlighted condition. The 
goal of the third experiment was to see whether accuracy could be 
improved by adapting the language model by gradually augmenting 
the number of transcripts of spoken code. 

5.1 Recognition with Base Model 
In the frst experiment, we recognized our audio recordings with 
Google Cloud Speech-to-Text5 service. We used a web API to rec-
ognize each audio fle. As test data, we used 224 recordings from 
the novice study (after discarding incomplete recordings) and all 
240 recordings from the expert study. We submitted audio using 
16-bit linear encoding at a sampling rate of 16 kHz. 

5.2 Language Model Adaptation 
In the second experiment, we used Google’s language model adap-
tation feature to test the recognition accuracy. We adapted the lan-
guage model by incorporating transcripts from unseen programs 
spoken by unseen users, which were not part of the test data. In 
order to investigate recognition accuracy on unseen users’ speech, 
we conducted a leave-one-participant-out cross-validation which is 
a modifed form of k-fold cross-validation where each fold excluded 
one participant’s data. We adapted the model using the unseen 
adaptation data from all participants except for one and tested it 
on that selected participant. The aim was to evaluate the adapted 

5https://cloud.google.com/speech-to-text 

https://cloud.google.com/speech-to-text
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Figure 3: Novice participant feedback (top) and expert participant feedback (bottom). The percentages on the left are the portion 
of participants who strongly disagreed, disagreed, or slightly disagreed with the statements. The percentages in the middle 
correspond to the portion who were neutral. The percentages on the right correspond to those who strongly agreed, agreed, or 
slightly agreed. 

language model’s ability to learn new programs spoken by new 
users. We repeated this process for each of the 24 participants. 

5.2.1 Creating the adaptation dataset. To ensure that there is no 
overlap between adaptation and test data, we split the transcripts 
into two sets– the frst half contains transcripts associated with the 
frst ten programs and the second half from the last ten programs. 
Each set provided a sufcient number of each of our distinct pro-
gramming constructs such as loops, if-else statements, expression 
statements, arrays, comments, and functions. 

Google’s model adaptation requires a set of unique phrases in 
order to improve the model’s recognition of those particular words 
or phrases. To create this set, we generated diferent n-grams from 
the adaptation transcripts ranging from bigrams (e.g. “left paren”) 
to 12-grams (e.g. for i equal to zero i less than fve i plus plus). 
Bigrams to 12-grams were chosen for adaptation dataset creation 
as they met the limits of Google’s speech-to-text adaptation API 
(5000 maximum phrases per request, 100,000 characters per re-
quest, and 100 characters per phrase). We found that the bigrams 
yielded the best recognition accuracy and selected it for further 
experimentation. We believe thew reason for this is that frequently 
repeated phrases or keywords like “system dot”, “int i”, “plus plus”, 
and “open paren” are more common in spoken code transcripts 
than complete sentences. As a result, bigrams are more efective 
in capturing these repeated phrases and keywords compared to 
higher order n-grams which may detect more complex and infre-
quent patterns. Furthermore, the use of higher n-grams leads to an 

increase in the complexity and computational cost of the model, 
which can be impractical for larger datasets. 

5.2.2 Comparing missing versus highlighted adaptation data. We 
wanted to investigate the impact on adaptation of collecting data 
in the missing and highlighted conditions. To do this, we adapted 
the model by taking transcripts from either the missing lines or 
the highlighted lines. Afterward, we conducted the leave-one-out 
experiments on each of these sets. For example, to recognize P1’s 
frst ten spoken programs, we adapted the model with missing line 
transcripts from the last ten programs of all participants except for 
P1. 

5.2.3 Amount of adaptation data. We explored the efect of gradu-
ally increasing the amount of adaptation data from 25%, 50%, 75%, 
and fnally, 100% on the improvement in recognition accuracy. For 
this, we created adaptation sets by randomly sampling 25%, 50%, 
and 75% missing transcripts combined with 25%, 50%, and 75% high-
lighted transcripts respectively, and fnally 100% of the transcripts. 
We repeated the random sampling ten times and took the average. 

5.3 Evaluation 
We used simple heuristic rules to post-process the recognition 
results from Google’s recognizer by converting all numbers and 
symbols into corresponding words. This was to ensure the recogni-
tion error rate could be fairly computed against our human tran-
scriptions (in which our protocol was to spell out all numbers and 
symbols). We then calculated the Word Error Rate (WER) for the 
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Figure 4: Comparison of Word Error Rate (WER) using in-
creasing amounts of adaptation transcripts for the novices 
(left) and the experts (right). The mean value is marked as a 
red triangle. The x-axis shows the percentage of transcripts 
used followed by the exact number of lines in parentheses. 

post-processed recognition results using our human transcriptions 
as the reference. WER was calculated by summing the number of 
insertions, deletions, and substitutions that occurred in the recog-
nition result compared to the reference transcript, dividing by the 
number of words in the reference, and multiplying by 100. 

5.4 Results 
The baseline model had a high WER of 28.29%, for novices and 
23.13%, for experts (Table 4). Adapting the language model on tran-
scripts from just the highlighted condition provided similar im-
provements to using just transcripts from the missing condition. 
This suggests that both conditions provide enough variations in 
spoken code to facilitate the language model’s learning. 

Adding a progressive amount of transcripts yields a substantial 
reduction in error rate. As shown in Figure 4, the WER signifcantly 
drops with only 25% of the adaptation transcripts, 19% relative to 
the baseline. Adding in more transcripts provided a slight reduction 
in error rate, though gains began to diminish. It is possible that the 
model is already able to capture most of the relevant patterns and 
information from the data, so adding more data did not provide as 
much beneft. On average, across all participants, adapting with 
100% transcripts reduced WER by 27% relative to the baseline. 

Table 5 shows some examples of target lines of code, our human 
reference transcripts, recognition results using the base model from 
Google, and recognition results using language model adaptation on 
100% of the transcripts. Model adaptation improved the recognition 
of homophones such as “for” versus “four”, “i” versus “eye”, “u” 
versus “you” and “two” versus “to”. Recognition of “for”, “i”, “u” and 
“two” were improved by 70%, 74%, 8%, and 9% relative respectively, 
indicating that the model learned the context in which these words 
were used. 

Language model adaptation with all transcripts (444 lines) 
yielded a WER of 19% (averaged across participants). This means 
that nearly one in every fve words spoken was not accurately 
recognized by the system. This level of performance is not ideal 
for a speech recognizer, especially when compared to the lower 
WERs achieved in recent years for natural language [2]. Addition-
ally, the words that do not occur in natural language such as “int” 
and “num” were frequently misrecognized (99% and 74% of the time, 
respectively) even after adapting the model. This limitation could be 
addressed by incorporating more domain-specifc language into the 
training data or by using a diferent language model that is specif-
ically tailored to technical language. Furthermore, the fact that 
the gains in accuracy began to diminish as more transcripts were 
added indicates that there are other factors that are limiting the 
system’s accuracy, such as the sophistication of Google’s language 
model adaptation algorithm, the quality of the acoustic models, 
or the robustness of the system to diferent accents and speaking 
styles. These limitations highlight the need for future research to 
explore alternative approaches that can improve the accuracy and 
robustness of speech recognition systems in the domain of spoken 
code. 

6 DISCUSSION 
Today’s educational and work landscape requires people to be 
well-versed in computational thinking, ideally with at least some 
exposure to programming. Programming is already a cognitively 
demanding task, adding additional demands only creates additional 
barriers to entry. Further, novice programmers, or even experts 
moving between languages, can struggle with the syntactic minutia 
of a particular language. Our user studies focused on a simple and, 
we argue, core part of programming by voice, namely the input 
of common statement types. Rather than imposing a prescriptive 
grammar for writing such statements, we instead observed how 
both novice and expert programmers would like to be able to speak 
such statements. The advantage of our approach is that if we can 
support fexible and more natural speaking of code, we may ease 
or eliminate the need for programmers to memorize a complicated 
set of commands. 

Our current approach was to have people record themselves 
speaking code to a hypothetical system. It could be that a person’s 
speaking style changes when interacting with a real system. Lack-
ing a real system, one could instead collect audio via a Wizard 
of Oz approach. However, we think a more signifcant problem is 
collecting a larger and more diverse set of data. This data should 
include programmers with motor impairments, a wider range of 
programming constructs, and languages beyond Java. While many 
languages share similar programming constructs, the details of a 
specifc language may require additional support for certain pur-
poses (e.g. how to specify indentation in Python). 

In our user studies, we asked programmers to speak a single 
line or a small section of code. People may speak diferently when 
creating an entire program from scratch, when creating more dif-
cult programs, or when using more advanced language constructs. 
While it might be desirable to support generating blocks of code 
from a single utterance (e.g. “create a for-loop that prints all the 
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Adaptation Data 
Programming experience 

Novice Expert 

None (baseline) 28.29±3.0 23.13±2.0 

All missing transcripts 
All highlighted transcripts 

22.75±2.0 
23.00±2.0 

18.92±2.0 
17.96±2.0 

25% missing + 25% highlighted transcripts 
50% missing + 50% highlighted transcripts 
75% missing + 75% highlighted transcripts 

23.33±2.0 
22.46±2.0 
21.75±2.0 

18.67±2.0 
18.12±2.0 
17.63±2.0 

All missing and highlighted transcripts 20.79±2.0 17.04±2.0 

Table 4: Word error rate (WER) using Google speech recognizer. ± values represent sentence-wise bootstrap 95% confdence 
intervals. 

Target code 

String veryLargeString2="world"; 

Transcript 

human 
base model 
adapted model 

Text 

string very large string two equals world 
string very large string to equals world 
string very large string two equals world 

while(num>=1) 

human 
base model 
adapted model 

human 
base model 
adapted model 

string space very large string two equals quote world quote 
bring space very large string two equals quote world quote 
string space very large string two equals quote world quote 

while num greater than equal to one 
well none greater than equal to one 
while none greater than equal to one 

for(int i=1; i<=n; i++) 

human 
base model 
adapted model 

human 
base model 
adapted model 

while loop condition num greater than zero end condition left bracket 
while loop condition none greater than zero and condition lock bracket 
while loop condition num greater than zero and condition left bracket 

for int i equals one i is less than or equals to n i plus plus 
four plus two is equals one i is less than or equal to n high bus bus 
for and i equals one i is less than or equal to n i plus plus 

largeNumCounter–; 

human 
base model 
adapted model 

human 
base model 
adapted model 

for i equals one i less than or equal to n i plus plus 
four equals one i less than or equal to an eye plus twelve 
four equals one i less than or equal to n i plus plus 

large num counter minus minus 
large and dumb counter minus minus 
large num counter minus minus 

human 
base model 
adapted model 

decrement large num counter 
decrement large and i am connor 
decrement large num counter 

Table 5: Recognition results used the base model and the adapted model on 100% of the transcripts. Recognition errors are 
highlighted in red and underlined. 

prime numbers in array nums”), it may not always align with pro- Related, even single lines of code in some cases can be quite long. 
grammers’ needs and preferences. Novice programmers or even This may require an interface that incrementally displays a partially 
experienced programmers may prefer to speak a single line of code completed line code as the user speaks. This introduces the addi-
when they want to make an edit or modifcation to an existing tional challenge of recognizing an utterance specifying only part 
codebase, rather than generating a large block of code from a single of a statement and also converting this utterance to an incomplete 
utterance. We think supporting robust entry of individual lines is a line of code. 
necessary frst step prior to considering the input of larger blocks. 
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Existing code corpora [7, 10] are sourced from written code. 
While these corpora can be useful for tasks like code summariza-
tion, code suggestion, and code generation, they are not well-suited 
for training a system to transcribe spoken code line-by-line. Our 
collected data maps each line of a human transcript with the corre-
sponding target code. To our knowledge, this is the frst work to 
build a spoken program corpus of this nature. 

While we were able to reduce WER by 27% relative to the baseline 
(no adaptation) with our modest amount of transcribed spoken 
code, we reached a plateau. One potential solution is to use transfer 
learning and fne-tune a large pre-trained model on a small amount 
of data. This approach would allow the model to better understand 
the nuances and variations in spoken code where we have full 
control of the acoustic and language model rather than using a 
commercial service as we did here. In addition, individuals might 
have specifc preferences for programming such as formatting and 
naming conventions. The language model may perform better if 
conditioned on surrounding code or on a programmer’s preferred 
coding style. Another future research direction would be to adapt to 
individual programming styles by incorporating user feedback into 
the system. The system can track and learn from the programmer’s 
feedback over time, allowing it to continually improve its ability to 
recognize an individual’s coding style. 

We found both novices and experts spoke in a natural way as 
well as in a literal way. Using natural language prompts for code 
generation is becoming increasingly popular and can help make 
programming more accessible and intuitive for a wider range of 
people. However, there can be issues with ambiguity and confusion 
in natural language prompts, which can lead to incorrect code being 
generated. For example, a prompt like "fnd the most similar items 
in a collection" could be ambiguous without specifying how to 
defne the most similar. By analyzing our collected data of both 
natural and literal spoken code, we can investigate which style 
enables the model to better understand and interpret programmer 
prompts. Further research is required to investigate ways to fne-
tune LLMs to better adapt to the individual coding styles of diferent 
programmers. By doing so, the generated code could better match 
the programmer’s preferred formatting and syntax choices, leading 
to more seamless integration with their existing codebase. 

Our study revealed that both novice and expert programmers 
did not exhibit a diferent speaking style in the missing versus 
highlighted condition, but they did speak faster in the highlighted 
condition. This could be attributed to the reduced cognitive demand 
in speaking the presented code, as opposed to generating code from 
scratch in the missing line condition. Moreover, novices skipped 
speaking the missing lines of code may be because they lacked 
knowledge. However, when designing a data collection methodol-
ogy, it is important to carefully consider the task’s goals and ob-
jectives and the trade-ofs between diferent approaches. A hybrid 
approach that combines both missing and highlighted conditions 
may help balance the trade-of between realism and cognitive load, 
resulting in a more comprehensive dataset that accurately refects 
the demands of coding tasks while enabling faster data collection. 
Moreover, providing additional context and guidance for novices, 
such as prompts or hints, may improve data validity by helping 
them generate code more efectively. 

Scaling up from our relatively small corpus poses a number 
of challenges. First, data needs to be collected from people with 
at least some programming experience, a relatively small portion 
of the population that is expensive to recruit. Second, it is time-
consuming to transcribe the utterances. This could perhaps be made 
more efcient by having people (e.g. crowdsourced workers) correct 
automatically generated transcripts of the utterances. However, this 
would require reasonably accurate recognition in the frst place 
to be faster than typing the transcript from scratch. Third, even 
with large amounts of data, it may be challenging to model the 
commonalities in spoken code when they involve unconstrained 
tokens (e.g. variable names in a for-loop statement). 

7 CONCLUSION 
As speech recognition technology continues to improve, it is likely 
that voice programming systems will become increasingly preva-
lent and accessible. In this study, we provided valuable insights 
into the challenges of developing such a system. Regardless of 
the experience, programmers tended to speak faster using natural 
language, thus motivating the need for a naturally spoken program-
ming system. We found standard speech recognizers had a high 
error rate due to the mismatch between the written English they 
were trained on and how people speak code. However, even using 
the modest number of examples of spoken code we collected, we 
showed recognition errors could be reduced. Our study demon-
strated the trade-of between the realism of the task and cognitive 
demand, which is important for researchers to consider when de-
signing experiments and selecting data collection methodologies. 
By understanding this trade-of, researchers can make informed 
decisions about the most appropriate method for collecting data 
that aligns with their research goals. Overall, our fndings can in-
form the design of future voice programming systems that takes 
into account diverse ways in which programmers might speak code, 
making the system more accessible to a wider range of users. 
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