
Using Confidence Scores to Improve Eyes-free Detection of
Speech Recognition Errors

Sadia Nowrin
Michigan Technological University

Houghton, MI, USA
snowrin@mtu.edu

Keith Vertanen
Michigan Technological University

Houghton, MI, USA
vertanen@mtu.edu

Abstract

Conversational systems rely heavily on speech recognition to inter-
pret and respond to user commands and queries. Despite progress
on speech recognition accuracy, errors may still sometimes occur
and can significantly affect the end-user utility of such systems.
While visual feedback can help detect errors, it may not always
be practical, especially for people who are blind or low-vision. In
this study, we investigate ways to improve error detection by ma-
nipulating the audio output of the transcribed text based on the
recognizer’s confidence level in its result. Our findings show that
selectively slowing down the audio when the recognizer exhibited
uncertainty led to a 12% relative increase in participants’ ability
to detect errors compared to uniformly slowing the audio. It also
reduced the time it took participants to listen to the recognition
result and decide if there was an error by 11%.
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1 Introduction

In recent years, there have been notable advancements in Auto-
matic Speech Recognition (ASR) technology, enabling eyes-free
interaction [8, 10, 15, 29] and improving accessibility for devices
without a visual display (e.g. Amazon Echo, Google Home). Speech
recognition can help make interfaces accessible for individuals
with motor impairments [5, 18, 19, 22, 30] as well as those who are
blind [2]. While deep learning models have advanced ASR accuracy
[3, 17], real-world ASR performance is often negatively impacted
by background noise, speaker variations, and speaker disfluencies
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[12]. Despite efforts to improve recognition accuracy in noisy en-
vironments using large language models [31, 32], only a modest
relative improvement of 5.7% was obtained [31]. Azenkot and Lee
[2] observed that blind users spent a significant amount of time
correcting errors when performing speech dictation tasks. Speech
error correction involves a two-step process: 1) detecting errors,
and 2) correcting errors [28]. To fully realize the potential of speech
recognition technology, accurate error detection and correction are
crucial. In this paper, we focus on the first step, error detection.

1.1 Related work

Numerous prior studies have investigated using visual feedback
to represent a speech recognizer’s confidence in its result [4, 9,
21, 23–25, 27]. However, visual feedback may not be possible for
individuals with visual impairments, for sighted users in situations
in which they cannot visually attend to their device, or when using
a device without a screen such as a smart speaker. Identifying
errors in conversational systems without visual feedback can be
challenging for a variety of reasons. Firstly, text-to-speech (TTS)
audio can be hard to understand, especially when errors involve
short or similar-sounding words [6]. In a study with sighted users
[13], participants missed approximately 50% of recognition errors
when the TTS audio was played at a rate of 200 words per minute
(wpm). Understanding TTS can be even more difficult in noisy
environments [7]. Finally, errors may occur infrequently, lulling
users into trusting the recognizer [20].

Beyond sighted users, blind individuals also face challenges with
detecting recognition errors through audio-only feedback. Hong et
al. [14] found no significant difference in ASR error identification
between blind users (42%) and sighted users (38%). This was despite
blind users’ extensive experience with synthesized speech. This
suggests that experience with synthesized speech alone may not be
sufficient for improving error detection, highlighting the need to
explore alternative approaches to enhance audio-based feedback.

In this study, we examine how users can detect speech recog-
nition errors through audio-only feedback. Similar to Hong and
Findlater [13], we investigate the impact of various TTS manip-
ulations on users’ ability to detect ASR errors. Hong and Find-
later found error detection improved when TTS was delivered at
200wpm, or even slower at 100wpm, compared to a higher speech
rate of 300wpm. In comparison to past work, we investigate ad-
justing the audio feedback using the speech recognizer’s confidence
score. The confidence score indicates how certain the ASR system
is about the accuracy of its result [11]. Additionally, we investigate
the error detection in both common phrases where all words were
in-vocabulary, and challenging phrases where at least one word was
out-of-vocabulary (e.g. acronyms, proper names).
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We studied the effect of confidence scores on eyes-free error
detection by testing four audio annotations: default speech rate,
slow speech rate, slow speech rate for low confidence recognitions,
and playing a beep for low confidence recognitions. We found
slowing down the TTS audio based on the confidence score led to
85% accurate error detection, outperforming uniform slowing of the
audio which had a detection accuracy of 76%. Despite the increased
audio length resulting from the selective slowing according to the
confidence score, the participants only experienced a slight 7%
increase in the time it took them to review the recognition results
compared to the default speech rate condition.

2 User Study

The goal of the user study was to investigate whether modulating
the audio presentation of the speech recognition results based on a
recognizer’s confidence score could improve the ability of users to
detect errors.

2.1 Participants

We recruited 48 participants (15 female, 32 male) aged from 21–
68 (mean=36, sd=11.5) via Amazon’s Mechanical Turk, an online
crowdsourcing platform. We opted for an online study in order
to to ensure participant safety during the COVID-19 pandemic.
Participants were compensated at a rate of $10 (USD) per hour.
Participants completed the experiment in 27 minutes on average.
All participants self-reported being native English Speakers. 67% of
the participants agreed that they frequently used speech interfaces
with 22% agreeing that computers had difficulty understanding
their speech.

At the end of the study, participants rated various statements
using a 7-point scale with one denoting strongly disagree and seven
denoting strongly agree. Statements included how easy it was to
identify recognition errors in each of the four audio annotation con-
ditions and whether they could anticipate which sentences would
likely have errors. See Appendix A for our exact questionnaires.

2.2 Study Design

We employed a within-subject experimental design with four coun-
terbalanced conditions:
• AllNormal — The recognition result was synthesized into
speech and played at 200wpm. This is similar to the default
speaking rate of commercial TTS systems.

• AllSlow — The result was played at 70% of the default speak-
ing rate, equivalent to 140wpm. This was somewhat faster than
the 100wpm used by Hong and Findlater [13]. We selected
140wpm as a compromise between slowing the speech to help
users spot errors and avoiding excessive listening time.

• UncertainSlow — If the confidence score was below a
threshold, the result was played at 140wpm.

• UncertainBeep — If the confidence score was below a
threshold, a one-second beep tone was played at the begin-
ning followed by the result played at the default speaking rate
of 200wpm.
In the UncertainSlow and UncertainBeep conditions, we used

a confidence threshold to determine whether to slow the TTS audio
or add a beep. To establish this threshold, we conducted a pilot study

with 12 participants. The pilot was conducted similar to our main
study but used an initial guess for the threshold. We recognized the
480 utterances collected during the pilot using Google’s speech-to-
text service.1 We tested different thresholds measuring: 1) the true
positive rate (TPR), the proportion of utterances containing one
more or recognition errors that were correctly identified as having
an error, and 2) the false positive rate (FPR), the proportion of
utterances with no errors that were incorrectly identified as having
an error. We evaluated the trade-off between the TPR and the FPR at
different thresholds with a receiver operating characteristic (ROC)
curve. Based on this analysis, we selected a threshold of 0.93, aiming
to balance sensitivity (0.85) and specificity (0.75) to detect a high
percentage of errors while avoiding too many false positives.

2.3 Procedure

Using a web application, participants first signed a consent form
and completed a demographic questionnaire. Participants then read
a set of instructions and completed two practice tasks to familiar-
ize themselves with the task. The audio was played at the default
speaking rate in the practice trial. At the start of each condition,
we provided participants with a description of how the audio anno-
tation worked for the current condition.

Participants recorded a sentence for each task which was tran-
scribed by Google’s speech-to-text service and then synthesized via
Google’s TTS service.2 Speech Synthesis Markup Language (SSML)
was used in the TTS request to slow the speech rate or add a beep.
Following a delay caused by the speech-to-text and TTS processing
(averaging around four seconds), participants listened to the audio
of the recognition result which was generated using a female voice
(en-US). Participants were allowed to play the audio only once.

After listening to the result, we asked participants if the refer-
ence sentence matched the audio. If they answered no, indicating
a speech recognition error, we asked them to locate the incorrect
or missing words, as well as any incorrect additional words that
may have appeared between two words in the reference sentence
(Figure 1). Participants could only detect errors after the audio fin-
ished playing, simulating a real-world scenario where users cannot
interrupt the system to correct errors during the initial playback.
Finally, participants completed a final questionnaire about their
experience in each condition and the study as a whole.

We selected phrases from a collection of 407 Twitter phrases [26].
This set included 194 common phrases containing all in-vocabulary
words and 213 challenging phrases containing at least one out-of-
vocabulary word. Out-of-vocabulary words were those not appear-
ing in a list of 100,000 frequent English words. Challenging phrases
included proper nouns and abbreviations that might be difficult for
the speech recognizer. We used phrases with 5–10 words. Partici-
pants were randomly assigned 40 phrases. Each condition included
five common and five challenging phrases that were presented in
random order.

3 Results

In total, we collected 1,920 utterances. Google’s recognizer had a
word error rate (WER) of 15% on these utterances. Our analysis

1https://cloud.google.com/speech-to-text
2https://cloud.google.com/text-to-speech
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Figure 1: Screenshot of our web application. In part (1), the user records a reference sentence, in this case “I do recommend your

book”. In part (2), after recognition, a control appears allowing playback of the recognition result. In this case the recognition

was “I really do command your book group”. In part (3), the user specifies if there were any recognition errors. If they answer

“No”, part (4) shows buttons for each word in the reference sentence as well as plus buttons between all words. The word buttons

allow the user to specify a word was recognized incorrectly or was missing in the result. The plus buttons allow the user to

specify if extra words were recognized in between reference words. Buttons toggled on are highlighted in yellow.
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Figure 2: Comparison of the detection accuracy (top) and the

detection time (bottom) in the four different study condi-

tions.

includes two key measures: the accuracy of the error detection and
the detection time. We conducted a one-way repeated measures
ANOVA to compare the four conditions. In cases where the nor-
mality assumptions were violated (Shapiro-Wilk test, 𝑝 < 0.05), we
employed the non-parametric aligned rank test (ART). We used
the Wilcoxon signed-rank test to compare the WER between the
common phrases and the challenging phrases.

3.1 Error Detection Accuracy

We calculated how often users correctly determined whether the
recognition result contained any errors (i.e. by selecting yes or no
after hearing the audio). As shown in Figure 2a, the proportion of
correct error detection was higher in UncertainSlow (85%) com-
pared to AllNormal (80%), AllSlow (76%), and UncertainBeep
(79%). A non-parametric ART test revealed a significant difference
(𝐹3,141 = 4.48, 𝜂2𝑝 = 0.087, 𝑝 = 0.005). Post-hoc pairwise com-
parisons with Bonferroni correction found a significant difference
between the UncertainSlow and AllSlow conditions (𝑝 = 0.002).
However, no significant differences were observed between Un-
certainSlow and AllNormal (𝑝 = 0.1), UncertainSlow and
UncertainBeep (𝑝 = 0.2), AllNormal and AllSlow (𝑝 = 0.9),
AllNormal and UncertainBeep (𝑝 = 1.0), or AllSlow and Un-
certainBeep (𝑝 = 1.).

In contrast to the previous study by Hong and Findlater [13]
that reported improved error detection with a slow speech rate, our
study did not find a significant difference in error detection between
other pairs. However, our results suggest that slowing down the
audio playback only when necessary might help users to better
detect the presence of errors compared to uniformly slowing down
the playback. As shown in Figure 2a, the variance in per-participant
error detection performance was smaller in the UncertainSlow
(𝑆𝐷 = 11.5) condition compared to AllNormal (𝑆𝐷 = 12.9), All-
Slow (𝑆𝐷 = 15.8), and UncertainBeep (𝑆𝐷 = 16.6). This may
indicate the confidence score-based slowing helped some users
avoid substantially lower accuracy compared to the average.

Unfortunately, we lacked sufficient data to reliably analyze the
impact of different audio annotations on participants’ ability to iden-
tify the specific locations of the errors. This was due to not every
participant experiencing a sufficient number of recognition errors
in each condition. However, we were did conduct some analysis by
aggregating errors across all conditions. We found users correctly
located 49% of all errors. Broken down by type of recognition error,
they located 2% of insertion errors, 49% of substitution errors, and
62% of deletion errors. Actual substitution and deletion errors were
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identified by aligning the reference and recognition transcripts us-
ing the Levenshtein distance algorithm [16]. We determined actual
insertion errors by manual review.

Across all conditions, the ratio of locating errors was 48% for
challenging phrases and 52% for common phrases. This indicates
participants missed nearly half of the errors in the transcribed text
and this was not strongly influenced by the difficultly of the sen-
tence. In particular, participants struggled to identify insertions,
suggesting that detecting and correcting added words may necessi-
tate greater attention.

In our study, participants were presented with both common and
challenging phrases. The WER was significantly higher at 17% for
challenging phrases compared to 12% for common phrases (𝑟 = -0.97,
𝑝 < 0.001). This suggests that our approach of using challenging
phrases to elicit more recognition errors was effective.

For common phrases, the proportion of correct error detection
was higher in UncertainSlow (90.9%) compared to AllNormal
(84.7%), AllSlow (83.5%), and UncertainBeep (82.5%). A non-
parametric ART test revealed a significant difference (𝐹3,141 = 9.40,
𝜂2𝑝 = 0.167, 𝑝 < 0.001). Post-hoc pairwise comparisons with Bonfer-
roni correction found significant differences between AllSlow and
UncertainSlow (𝑝 = 0.0003), and between AllSlow and AllNor-
mal (𝑝 = 0.0001). No significant differences were observed between
UncertainSlow and UncertainBeep (𝑝 = 1.0) or between All-
Normal and UncertainBeep (𝑝 = 1.0).

For challenging phrases, the proportion of correct error detection
was also higher in UncertainSlow (79.9%) compared to Uncer-
tainBeep (75.9%), AllNormal (75.6%), and AllSlow (68.5%). An
ART test revealed a significant difference (𝐹3,141 = 11.52,𝜂2𝑝 = 0.197,
𝑝 < 0.001). Post-hoc pairwise comparisons with Bonferroni correc-
tion found significant differences between AllNormal and All-
Slow (𝑝 = 0.0002), and between AllNormal and UncertainBeep
(𝑝 = 0.0003). No significant differences were observed between
UncertainSlow and UncertainBeep (𝑝 = 0.2), or between Un-
certainSlow and AllNormal (𝑝 = 0.07).

Comparing results between the common and challenging phrases,
it is evident that error detection accuracy decreases for challenging
phrases. However, the relative advantages of UncertainSlow re-
mained consistent and had the highest detection accuracy across
both common (90.9%) and challenging (79.9%) phrases. This suggests
that selectively slowing playback as done in the UncertainSlow
condition effectively supports error detection across varying task
difficulties.

3.2 Detection Time

We measured the detection time from the end of the audio playback
to the participant’s response of yes or no. Average detection times
were similar: 1.98 seconds in AllNormal, 2.03 seconds in All Slow,
1.86 seconds in Uncertain Slow, and 2.26 seconds in Uncertain
Beep condition (Figure 2b). These differences were not significant
(𝐹3,141 = 0.69, 𝜂2𝑝 = 0.014, 𝑝 = 0.56).

We also calculated the total time it took participants to listen
to the audio and to respond yes or no. The total time was 4.52 s
in AllNormal, 4.85 s in UncertainSlow, 5.43 s in AllSlow, and
5.42 s in UncertainBeep. As expected given the similar detection
times we observed between conditions, playing at the normal rate

with no beepwas the fastest. Always slowing the playback or adding
the beep for uncertain recognitions resulted in a 20% increase in
total time compared to normal playback. Using a slower speaking
rate for uncertain results instead of the beep was more time efficient,
resulting in only a 7% increase in total time compared to normal
playback and an 11% decrease compared to always slowing down
the audio.

3.3 Subjective Feedback

Participants rated how easy it was to identify errors under four con-
ditions on a 7-point Likert scale (1=strongly disagree, 7=strongly
agree). As shown in Figure 3, 94% of participants found AllNormal
easy, followed closely by 92% for AllSlow and UncertainBeep,
and 86% for UncertainSlow. The Friedman test indicated no sig-
nificant difference in participants’ ratings across the four conditions
(𝜒2 (3) = 2.94, 𝑝 = 0.40).

Participants also rated whether they could anticipate when a
sentence was likely to result in a recognition error. A majority
felt they could anticipate errors based just on the sentence with
62% expressing some level of agreement (slightly agree, agree, or
strongly agree). In contrast, 24% of participants expressed some level
of disagreement (slightly disagree, disagree, or strongly disagree).
The remaining 14% were neutral.

4 Discussion

In our study, we used four audio annotations to assess participants’
ability to detect errors in their transcribed speech. Our result sug-
gests that using the recognizer’s confidence in its results to change
how we present the result audio can help users detect errors.

One limitation of our study is we only considered native English
speakers who were sighted. Blind users, for example, may have
more experience listening to TTS, which could impact their ability
to detect errors in TTS audio. Additionally, non-native speakers
with ascents may have different experiences with speech recog-
nition technology. Future research should explore how diverse
populations detect errors when using speech recognition.

We do not know the environment our crowdsourced participants
completed our study, but it is likely many were in a quiet environ-
ment. In real-world use, speech recognition users may be exposed
to various types of noise and distractions that could affect their
ability to detect errors. Moreover, users may be engaged in other
tasks while using voice assistants (e.g. driving or exercising), which
could also affect their ability to detect errors. Future studies could
investigate how different contexts impact users’ ability to detect
speech recognition errors.

Our evaluation used a single static confidence threshold deter-
mined by our pilot testing. Instead, a system could try and dynami-
cally adjust a user’s threshold based on observing their interactions
with previous recognition results. For example, if a result was above
the threshold but the user corrected it, this may signal that a lower
threshold is needed.

To create a realistic task, we had participants record themselves
speaking sentences and used a state-of-the-art speech recognizer to
present their actual transcription results. While we could have arti-
ficially forced recognition errors, we wanted to study the impact
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of our interventions in a more externally valid task with accu-
rate speech recognition, but with some phrases containing difficult
words (as might happen in real-world use). However, this resulted
in our data lacking sufficient recognition errors for each partic-
ipant and condition for fine-grained analysis of users’ ability to
locate errors. We suggest future work consider additional ways to
ensure sufficient errors in each condition such as: 1) a longer or
multi-session study with more utterances per condition, 2) adding
noise to participant’s audio to increase errors, or 3) occasionally
presenting the second best recognition result.

Our experimental application first recorded a participant’s entire
spoken utterance before sending it to a remote server for speech
recognition. Once the client received the recognition result, it was
sent to another remote server to generate the TTS audio. This
resulted in participants waiting around four seconds to hear their
recognition result. A real-world interface could reduce this latency
by: 1) streaming audio to the speech recognizer, 2) performing
speech recognition and TTS on the same server, and 3) streaming
TTS audio to the client as it is generated.

We used the same TTS voice for all conditions. Future work
could explore the impact of the specific TTS voice or technology
(e.g. concatenative versus neural TTS). Since synthetic speech can
be generated in a hyperarticulate style [1], it would be interesting to
investigate using hyperarticulate speech for low-confidence results.
This might both help draw attention to the potential error and help
users better discriminate true errors from false positives.

We changed the presentation of the entire recognition result
based on the utterance confidence score. If word-level confidence
scores are available, future work could test modifying the audio of
individual words suspected of being incorrect. This could be done
by changing a word’s speaking style, rate, or by adding auditory
markers near the word. Another possibility would be to repeat
suspected word errors to help users verify if they are true errors.

5 Conclusion

Our study investigated whether changing the audio of a speech
recognition result based on its confidence score helped participants
detect more recognition errors. We changed the audio either by
slowly the TTS or by adding a beep tone. We found using con-
fidence scores showed a trend toward improved error detection
including reducing the variability in the detection accuracy of our
users. However, the 85% detection accuracy of selectively slowing

playback was not statistically different than the 80% accuracy of
the baseline condition that played all results at normal speed. This
highlights the need for further research to validate and expand
upon these findings. Nevertheless, we believe our results can help
inform the design of more effective error detection features for
eyes-free speech interaction.
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A Questionnaire

Figure 4 shows the questions we asked participants at the start of the study. Figure 5 show the questions we asked participants at the end of
the study.

 

INITIAL QUESTIONNAIRE 

Finding and Correcting Speech Recognition Errors 

 
Age (approximate): ________      
 
Gender: ________ 
 
How much do you agree or disagree with the following statements (X a single circle)? 

# Statements Strongly 
disagree 

Strongly 
       agree 

 

1 I consider myself a fluent English speaker  ○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

2 When I speak English, I have a non-native accent ○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

3 I frequently use speech recognition to control or 
enter text on my computer, mobile device, or smart 
speaker 

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

4 When I speak English, people have trouble 
understanding me 

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

5 When I speak English, computers have trouble 
understanding me (e.g. Siri, Alexa, Google 
Assistant) 

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

  

 

 

 

 

 

 

 

 

 

Figure 4: Our initial questionnaire asked participants their age and gender. They then rated five statements about their English

ability and their experience with speech recognition. Statements were rated on a 7-point Likert scale.
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Post-Experiment QUESTIONNAIRE 

Finding and Correcting Speech Recognition Errors 

 

How much do you agree or disagree with the following statements (X a single circle)? 

# Statements Strongly 
disagree 

Strongly 
       agree 

 

1 Identifying errors was easy in “Normal Speech 
Rate” condition.  

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

2 Identifying errors was easy in “Slow Speech rate” 
condition.  

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

3 Identifying errors was easy in “Slow Speech rate for 
Uncertain Recognition” condition.  

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

4 Identifying errors was easy in “Beep for Uncertain 
Recognition” condition.  

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

5 Before listening to the audio, I had a good idea if 
there will be any recognition errors.  

○ 1  ○ 2  ○ 3  ○ 4  ○ 5  ○ 6  ○ 7 

6 What did you like about the experiment?  

7 What did you dislike about the experiment?  

  

 

 
Figure 5: Our final questionnaire asked participants to rate five statements about their ability to find errors in the experiment’s

four conditions. They also rated their ability to anticipate sentences that would likely have recognition errors. Statements

were rated on a 7-point Likert scale. We also asked open two open ended questions about what they liked or disliked about the

experiment.
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