
Counting Fingers: Eyes-Free Text
Entry without Touch Location

Keith Vertanen
Michigan Technological
University
Houghton, MI, USA
vertanen@mtu.edu

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s).
CHI’16 Workshop on Inviscid Text Entry and Beyond , 8 May 2016, San Jose, CA.

Abstract
Entering text on a touchscreen device without visual feed-
back can be challenging. In this paper I explore the fea-
sibility of an approach where a single character of output
is ambiguously specified by touching the screen with be-
tween one to five fingers. The count of fingers is fed to a
sentence-based decoder which attempts to infer a user’s in-
tended text. This approach allows users to touch the screen
with any finger orientation so long as it is touched with the
correct number of fingers. I compare the accuracy of five
different finger count to letter mapping, including two based
on braille. Four of the mappings provided promising accu-
racy with character error rates below 5% on simulated input.

Author Keywords
Text entry; eyes-free text input; mobile interaction

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: Input de-
vices and strategies

Introduction
Many computer interfaces rely on text input. Conventional
desktop computers support efficient text input easily via a
physical keyboard for input and a screen for visual output.
The rise of mobile devices has extended the reach of com-
puting to many new locations and situations. Increasingly



mobile devices combine a device’s input and output capa-
bilities into a smooth glass touchscreen. But touchscreen
text input is particularly difficult for users who are blind or
visually-impaired. Touchscreens also present challenges for
users who are situationally-impaired and operating a device
eyes-free. In the future, as computing becomes even more
pervasive, always-available interactions [7] may require in-
put on devices that lack visual displays altogether.

This work explores whether simply knowing how many fin-
gers were pressed on a touchscreen is sufficient for ac-
curate recognition of a user’s intended text. One possible
application would be to provide users proficient in braille,
or perhaps just learning braille, an easier way to enter text
without requiring chorded input exactly specifying which
braille cells are on. In grade 1 unabbreviated braille, char-
acters are represented by a 3 x 2 binary matrix of dots.
Since the letters A–Z plus apostrophe use between one and
five dots, it is possible to create a direct mapping between
finger count and characters according to the braille code.

Finger count to letter maps:

• BRAILLE - Based on the
number of braille dots. Since
5 had only two letters and q
is rare, I assigned space to 5.

1 = a’, 2 = bceik,
3 = dfhjlmosu, 4 = gnprtvwxz,
5 = qy_

• BRAILLE+ - Same as
BRAILLE except space is
indicated by some other input
action.

0 = _, 1=a’, 2=bceik,
3 = dfhjlmosu, 4 = gnprtvwxz,
5 = qy

• ALPHABETIC - Alphabetic or-
der with a similar number in
each group except for space
which is specified by a one
finger tap.

1 = _, 2 = abcdef,
3 = ghijklm, 4 = nopqrst,
5 = uvwxyz’

• ALPHABETIC+ - Alphabetic
order with an space indicated
by some other input action
such as a swipe.

0 = _, 1 = abcde, 2 = fghij,
3 = klmno, 4 = pqrstu,
5 = vwxyz’

• CVS - Uses only three
groups: consonants, vow-
els, and space.

1 = _, 2 = aeiouy,
3 = bcdfghjklmnpqrstvwxz’

Past work on chorded physical keyboards has shown ex-
perts can achieve fast entry rates (e.g. 60 wpm in [5]). But
input methods such as the Twiddler keyboard require sub-
stantial practice and a specialized device. Past work has
also investigated chorded input on touchscreen devices.
Both Perkinput [1] and BrailleTouch [8] make use of multi-
touch chords specifying a braille cell. Using such multitouch
chords on small devices requires either two input events
using one hand or simultaneous events using both hands.

Such chorded multitouch input may be tricky to get right,
both for the software, and for a user in a realistic mobile
use scenario. The finger counting approach allows a user
to hold the device in one hand while making a single mul-
titouch gesture with a second hand. This frees a user to
adopt any hand pose that allows all five fingers to strike the

sensor. Further, a user only has to remember the number of
fingers to touch with and can ignore where they touch.

Finger count to letter mappings
This finger count to letter approach is similar to an ambigu-
ous keyboard in which a single button has multiple labels.
A button press specifies a set of possible letters and a lan-
guage model or dictionary determines the most likely word
given a sequence of ambiguous key presses (e.g. T9).

There is a long history of work on optimizing ambiguous
keyboards (e.g. [4, 2]). Here I focus on mappings that closely
mirror braille or consist of easy to learn letter groupings. As
shown in the list in the left margin, I designed five one-to-
many mappings for the numbers 1–5 to the 28 characters:
a–z, apostrophe, and space (denoted _). Numbers spec-
ify how many fingers were detected in a multitouch event. I
also allow “plus” variants where space is entered by some
other input action such as a right swipe (denoted by 0).

Decoder and input data
Input to the recognizer is a sequence of numbers, one num-
ber for each character in a user’s desired sentence. This
sequence is fed to the VelociTap decoder [10]. Normally Ve-
lociTap uses a keyboard model based on two-dimensional
Gaussians. In this work I replaced the keyboard model with
a step model that places all probability mass on a single
key. That key is the number in the mapping and each key
generates a recognition hypothesis for every character as-
signed to the ambiguous key. Aside from these modifica-
tions, VelociTap’s search works as described in [10].

I created a 12-gram letter language model with a vocabu-
lary of the lowercase letters a–z, limited punctuation (’,!?),
and space. I created a 4-gram word model with a vocabu-
lary of the most frequent 64 K words. I trained the models



on billions of words of Twitter, Usenet, blog, social media,
forum, and movie subtitle data. Training sentences were fil-
tered using cross-entropy difference selection [6] using an
in-domain model trained on short email sentences.

For testing, I used sentences written by Enron employees
on their Blackberry mobile devices [9]. I split a set of 1347
sentences containing no numbers into equal sized devel-
opment and evaluation test sets. Test sentences consisted
of only lowercase characters, apostrophes, and spaces.
For each set, I generated ambiguous key entry sequences
based on each finger count to letter mapping. This sim-
ulates a user who makes perfect use of a given mapping
(i.e. the user did not mistakingly use the wrong number of
fingers, add extra input, or leave out input). I used the sim-
ulated entries in offline experiments, measuring VelociTap’s
ability to recover the original text from the ambiguous input.

I tuned VelociTap’s parameters on the development set. A
different parameter set was tuned for each mapping. Veloc-
iTap normally proposes character insertion and deletions to
model mistakes in touchscreen input. I disabled insertions
and deletions for the experiments reported here. I used the
tuned parameters to recognize the unseen evaluation set.

Random sentences from the
evaluation set:

• maybe she will be too pre-
occupied about whether
she has a job or not

• if you need john speak up
now

• in isolation all of these
things are trivial

• the troops just walked in

• it is no problem

• i’m available by cell when
you get data points

• had we not run into the el
paso issues the number
would have held

• i hate not being there but i
think these other meetings
are big enough to have
presence in omaha

• shelly there will be no one
from my group unless i
go up to meet with min-
negasco

• my feeling is that once they
affirmatively decide they
are going to florida you
should say that i rented
a house and that you are
going to come over and
stay with us for a few days

Results
I report recognition accuracy using character error rate
(CER). CER is the number of character substitutions, in-
sertions, and deletions required to transform the recognized
text into the reference text divided by the number of char-
acter in the reference (times 100). To measure the compu-
tation costs of the different mappings, I report the average
decode time per sentence on ten passes over the evalua-
tion set. Experiments were on a i7-4790K 4 GHz desktop
with four cores. VelcoiTap was set to use eight threads.

Table 1 shows the performance of the five mappings from

Mapping CER (%) Decode time (s)

ALPHABETIC+ 1.96 0.14
BRAILLE+ 2.77 0.11
ALPHABETIC 3.41 0.20
BRAILLE 3.69 0.21
CVS 23.17 4.31

Table 1: Error rate and average recognition time of the mappings.

most to least accurate. Providing a separate action for
space allowed both the BRAILLE and ALPHABETIC map-
pings to provide much better accuracy. As might be ex-
pected, the more balanced sized groups of the ALPHA-
BETIC mappings provided better accuracy compared with
the more unbalanced BRAILLE mappings. Both BRAILLE

mappings provided error rates below 4% CER. This sug-
gests it may be possible to provide accurate recognition for
braille users without requiring they learn a new mapping.

The CVS mapping was a disaster. Providing just whether
a letter is a vowel or consonant provided insufficient signal.
This mapping did work on some sentences (21% of sen-
tences were decoded with no errors), but for many it got the
majority of words wrong. While spaces and the length of
words were essentially known, VelociTap was still free to
imagine many words at each position, some of which may
end up being more probable under the language model
than the actual sentence. Here is one example:

Reference : i like nick and everett

Recognition : i love kids and animals

Impact of language model size
Thus far the VelociTap decoder has been using quite large
language models (a 2.2 GB letter model and a 3.8 GB word
model). This approximates the accuracy obtainable using
cloud-based infrastructure. However, for performance or



Language models ALPHABETIC+ BRAILLE+
Combined size (MB) CER (%) CER (%)

47 3.05 4.78
260 2.34 3.60

1701 1.96 2.98
6352 1.96 2.77

Table 2: Error rate using different sized language models.

privacy reasons, decoding on device may be desirable.
Table 2 shows the accuracy of the ALPHABETIC+ and
BRAILLE+ mapping using different sized language mod-
els. While it appears model size can be reduced somewhat
without sacrificing accuracy, getting accurate models small
enough to be deployable on device may be challenging.

Future Work
Thus far I have only tested the approach using simulated
perfect input. Real-world input is bound to be more imper-
fect: users may not always remember the right number cor-
responding to a character, users may not get all their fin-
gers in the active area of the device, touchscreen sensors
may detect the wrong number of fingers, etc. While the best
mappings have a low error rate of 2% CER, whether they
can continue to provide acceptable accuracy in the face of
real-world user input noise remains to be seen.

Entry speed was not explored here. But it is likely the finger
counting approach will be competitive with chorded phys-
ical or touchscreen keyboards. Experts have been shown
to reach 60 wpm on a chorded physical keyboard [5] and
38 wpm on a chorded touchscreen keyboard [1]. Thus the
finger counting may plausibly allow us to approach the free-
flowing, or inviscid entry rate required to compose novel
text. This rate has been estimated at around 67 wpm [3].

Another open question is whether users can easily learn
such a mapping and actuate the required multitouch ges-
tures. Finally, it would be interesting to explore whether the
braille mappings are useful either as an input method itself
or as a training aid for users who are visually-impaired.

Conclusions
This preliminary work shows that using only the count of
fingers in a touchscreen event may provide sufficient sig-
nal for accurate sentence-based recognition. Adopting a
mapping based on the number of dots in a braille cell al-
lowed sentences to be input with a low error rate of 3.7%
CER. If an additional gesture can be used for space, error
rate dropped further to 2.8% The finger counting approach
has the potential to be an easier input method to learn than
other braille-based input methods that require the explicit
specification of the entire braille cell pattern.

A mapping based on alphabetic ordering provided even
better accuracy than the braille mappings with a CER of
3.4%. An even lower CER of 2.0% was possible using an
extra gesture for space. The alphabetic mappings could
provide an easy-to-learn input method for devices without
a visual display or use in situations where users cannot
visually attend to their device.

Author biography
Keith Vertanen is an Assistant Professor at Michigan Tech-
nological University. He specializes in designing intelligent
interactive systems that leverage uncertain input technolo-
gies including input via speech, touch, and eye-gaze.

Workshop demo
For demonstration at the workshop, I plan to implement
several of the mappings in a standalone Android text entry
app using language models that fit on typical devices.



References
[1] Shiri Azenkot, Jacob O. Wobbrock, Sanjana Pra-

sain, and Richard E. Ladner. 2012. Input Finger
Detection for Nonvisual Touch Screen Text Entry
in Perkinput. In Proceedings of Graphics Interface
2012 (GI ’12). Canadian Information Processing
Society, Toronto, Ont., Canada, Canada, 121–129.
http://dl.acm.org/citation.cfm?id=2305276.2305297

[2] Mark D. Dunlop, Naveen Durga, Sunil Motaparti,
Prima Dona, and Varun Medapuram. 2012. QW-
ERTH: An Optimized Semi-ambiguous Keyboard
Design. In Proceedings of the 14th International
Conference on Human-computer Interaction with
Mobile Devices and Services Companion (Mobile-
HCI ’12). ACM, New York, NY, USA, 23–28. DOI:

http://dx.doi.org/10.1145/2371664.2371671
[3] Per Ola Kristensson and Keith Vertanen. 2014. The

Inviscid Text Entry Rate and Its Application As a Grand
Goal for Mobile Text Entry. In Proceedings of the 16th
International Conference on Human-computer Inter-
action with Mobile Devices and Services (Mobile-
HCI ’14). ACM, New York, NY, USA, 335–338. DOI:

http://dx.doi.org/10.1145/2628363.2628405
[4] G.W. Lesher, B.J. Moulton, and D.J. Higginbotham.

1998. Optimal character arrangements for ambigu-
ous keyboards. Rehabilitation Engineering, IEEE
Transactions on 6, 4 (Dec 1998), 415–423. DOI:

http://dx.doi.org/10.1109/86.736156
[5] Kent Lyons, Thad Starner, Daniel Plaisted, James Fu-

sia, Amanda Lyons, Aaron Drew, and E. W. Looney.
2004. Twiddler Typing: One-handed Chording Text En-
try for Mobile Phones. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’04). ACM, New York, NY, USA, 671–678. DOI:

http://dx.doi.org/10.1145/985692.985777

[6] Robert C. Moore and William Lewis. 2010. Intel-
ligent Selection of Language Model Training Data.
In Proceedings of the ACL 2010 Conference Short
Papers (ACLShort ’10). Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, 220–224.
http://dl.acm.org/citation.cfm?id=1858842.1858883

[7] Dan Morris, T. Scott Saponas, and Desney Tan. 2011.
Emerging Input Technologies for Always-Available Mo-
bile Interaction. Foundations and Trends in Human-
Computer Interaction 4, 4 (April 2011), 245–316.
DOI:http://dx.doi.org/10.1561/1100000023

[8] Caleb Southern, James Clawson, Brian Frey, Gre-
gory Abowd, and Mario Romero. 2012. An Evalu-
ation of BrailleTouch: Mobile Touchscreen Text En-
try for the Visually Impaired. In Proceedings of the
14th International Conference on Human-computer
Interaction with Mobile Devices and Services (Mobile-
HCI ’12). ACM, New York, NY, USA, 317–326. DOI:

http://dx.doi.org/10.1145/2371574.2371623
[9] Keith Vertanen and Per Ola Kristensson. 2011. A Ver-

satile Dataset for Text Entry Evaluations Based on
Genuine Mobile Emails. In Proceedings of the 13th
International Conference on Human Computer In-
teraction with Mobile Devices and Services (Mobile-
HCI ’11). ACM, New York, NY, USA, 295–298. DOI:

http://dx.doi.org/10.1145/2037373.2037418
[10] Keith Vertanen, Haythem Memmi, Justin Emge,

Shyam Reyal, and Per Ola Kristensson. 2015. Ve-
lociTap: Investigating Fast Mobile Text Entry Using
Sentence-Based Decoding of Touchscreen Keyboard
Input. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 659–668. DOI:

http://dx.doi.org/10.1145/2702123.2702135

http://dl.acm.org/citation.cfm?id=2305276.2305297
http://dx.doi.org/10.1145/2371664.2371671
http://dx.doi.org/10.1145/2628363.2628405
http://dx.doi.org/10.1109/86.736156
http://dx.doi.org/10.1145/985692.985777
http://dl.acm.org/citation.cfm?id=1858842.1858883
http://dx.doi.org/10.1561/1100000023
http://dx.doi.org/10.1145/2371574.2371623
http://dx.doi.org/10.1145/2037373.2037418
http://dx.doi.org/10.1145/2702123.2702135

	Introduction
	Finger count to letter mappings
	Decoder and input data
	Results
	Impact of language model size
	Future Work
	Conclusions
	Author biography
	Workshop demo
	References

