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ABSTRACT

For speech recognition research, it is often necessary to start
with a competent baseline acoustic model. But training and
tuning a competent model using research recognizers such as
Cambridge’s HTK and CMU’s Sphinx can be time-consuming.
In an effort to minimize wasted effort, I have created recipes
for HTK and Sphinx which utilize the standard Wall Street
Journal training corpus. In this paper, these recipes are de-
scribed. The word error rate (WER) and real-time perfor-
mance of the models are evaluated for differing HMM topolo-
gies, number of tied states, number of Gaussians, and differ-
ing test sets. My goal is to provide practical advice and results
to researchers who are thinking of using HTK or Sphinx for
real-time recognition on dictation-like tasks.

1. RECIPE DETAILS

In this section, I give the details of the acoustic model train-
ing for HTK and Sphinx. Both acoustic models are trained
for American English using utterances from the Wall Street
Journal (WSJ) corpora. Both recipes use the CMU pronounc-
ing dictionary and its corresponding set of 39 phones without
stress markings. Each recipe consists of a set of Perl scripts,
bash scripts, and configuration files appropriate for use on a
Unix-type system.

1.1. HTK recipe

The HTK training recipe closely follows the steps in the tu-
torial in the HTKBook [1]. HTK version 3.4 was used for
the experiments reported here. The recipe scripts support a
number of different training variants:

• Amount of training data (SI-84, SI-284, or all WSJ
training data)

• Word-internal or cross-word triphones

• Flat-start or TIMIT-bootstrapped monophones

The acoustic waveforms from WSJ and optionally TIMIT
are first parametrized into a 39-dimensional feature vector

consisting of 12 cepstra plus the 0th cepstral, deltas and delta
deltas, normalized using cepstral mean subtraction (MFCC
D A Z). The recipe then initializes a set of 40 HMMs (39
monophones plus 1 silence model). Each HMM has three
output states with a left-to-right topology with self-loops and
no transitions which skip over states.

If TIMIT-bootstrapping is used, the phonetically aligned
utterances in TIMIT are used to initialize the HMM parame-
ters by cutting out the corresponding utterance segments for a
particular phone model. The segments are then used in an it-
erative Viterbi-training scheme until the parameters converge.
The Viterbi-estimated parameters and then refined by a fur-
ther Baum-Welch training cycle.

If a flat-start initialization is used instead, models are ini-
tialized with the global mean and variance of the WSJ0 train-
ing data. Utterances are then uniformly segmented and their
parameters re-estimated in several rounds of Baum-Welch train-
ing.

The silence (sil) model in the trained monophones is then
duplicated to create a short pause (sp) model. The sp model
adds a transition skipping over all output states. The output
distributions of sp and sil have their parameters tied. The
trained monophones are used to force-align the word-level
training transcripts with the training utterances. Since a word
my have multiple pronunciations in the dictionary, this re-
alignment hopefully improves the phone-level accuracy of the
training transcripts. The new transcripts are then used in 4
rounds of Baum-Welch training.

The phone-level transcripts are converted into triphone
transcripts, generating a list of all triphones observed in the
training data. The triphones may either be word-internal (block-
ing phone context across word boundaries) or cross-word.
Each triphone is cloned from the monophone of its central
phone. The state transition matrices of triphones sharing the
same central phone are tied. The triphone models are then
trained using 2 rounds of Baum-Welch training.

A list of all possible triphones given the pronunciation
dictionary is created. This includes many triphones which
may not have been observed in the training data but are in
theory possible given a language model based on the words



in the dictionary. The states of these unseen triphones need
to be tied to triphones we have training data for. In addition,
such tying of triphone states reduces the number of model
parameters, potentially leading to a more robust model. A
decision tree process using a list of linguistically motivated
questions about a triphone’s context is used to cluster and tie
triphone states together. The resulting tied-state triphones are
re-estimated using 4 rounds of Baum-Welch training.

The number of Gaussians per-state is now increased by
splitting each Gaussian and perturbing the mean of the two
new Gaussians. The new models are trained with 4 rounds
of Baum-Welch and the splitting/training process repeated as
needed. Depending on the amount of training data, the recipe
mixes up to 8 or 16 Gaussian per non-silence state. The si-
lence models use double the number of output distributions,
16 or 32 Gaussians per silence state.

Throughout the recipe, the parallel mode feature of HER-
est is used during Baum-Welch parameter re-estimation. This
causes the training data to be split into a fixed number of sub-
sets. The accumulators for each subset are computed sep-
arately and subsequently combined. This improves the nu-
merical accuracy and prevents errors when training on large
amounts of data.

The HTK recipe is available from [2]. Many of the acous-
tic models used in the experiments described later in this pa-
per are available for download.

1.2. Sphinx recipe

The Sphinx recipe is based on the tutorial from [3]. The recipe
adapts the tutorial scripts to support training from WSJ data.
The recipe allows flexible configuration of model training and
decoding including:

• Amount of training data (SI-84, SI-284, or all WSJ
training data)

• Continuous or semi-continuous models

• Number of senones

• Number of Gaussians per state

• HMM topology (number of states, skip transitions)

• Decoder (Sphinx-2, Sphinx-3, PocketSphinx)

The acoustic waveforms from WSJ are first parametrized
into 13-dimensional cepstrum. For continuous models, these
features along with computed delta and delta-deltas are used
(1s 12c 12d 3p 12dd). For semi-continuous models, four fea-
ture streams are used: 12 cepstra, 12 delta cepstra, 3 power
terms, and 12 double delta cepstra (c/1..L-1/,d/1..L-1/,c/0/
d/0/dd/0/,dd/1..L-1/). Cepstral mean normalization is per-
formed using the current utterance.

The Resource Management acoustic models (as trained
using CMU’s tutorial scripts [3]) are used to force-align the
WSJ word-level training transcripts. This chooses the most

probable pronunciation variant for each word and also inserts
instances of the silence “word”.

The recipe initializes a set of 40 HMMs (39 monophones
plus 1 silence model). Each HMM has a left-to-right topology
with self-loops. Depending on the configuration file, each
HMM will have either 3 output states and no skip transitions,
or 5 output states and transitions which skip states.

When training semi-continuous models, 2500 training ut-
terances are used to initialize 256 codewords entries in each of
4 codebooks (corresponding to the 4 feature streams). Code-
words are found using k-means clustering. The codebook
Gaussians’ mean and variance are initialized based on the
2500 utterances. The mixture weights and transition proba-
bilities in each state of each HMM are initialized equiproba-
ble.

For continuous models, the mean and variance of the Gaus-
sian in each state of each HMM is set to the global mean and
variance of the training data. Mixture weights and transition
probabilities are initialized equiprobable.

The context-independent models are trained using multi-
ple rounds of Baum-Welch training. Training iterations con-
tinue until the ratio of the likelihood of the training data using
the current iteration’s parameter to the last iteration’s likeli-
hood is less than some threshold (0.04 was used here).

Next, a list of all possible triphones given the pronuncia-
tion dictionary is generated. The number of times each pos-
sible triphone occurs in the training data is counted. Any tri-
phone that did not occur in the training data is discarded. The
context-dependent triphones are created, copying the model
parameters in each state of the corresponding trained context-
independent triphone. The context-dependent models are trained
using Baum-Welch until convergence.

The states of all triphones (both seen and unseen in the
training data), are now tied. The number of tied-states (or
senones) is specified in the configuration file. A data-driven
clustering algorithm is used to automatically derive a set of
questions for building a decision tree. Note that similar to
HTK, a linguistically motivated set of questions could be used,
but this was not tested here. The decision tree is pruned until
the desired number of tied-states is reached.

The tied-state context-dependent models are trained us-
ing Baum-Welch until convergence. After convergence, if
the user-specified number of Gaussians per state has not been
reached, each Gaussian is split into two with each Gaussian
getting a slightly perturbed mean. Baum-Welch training is
then performed and the splitting/training process repeated un-
til the desired number of Gaussians is reached.

The Sphinx recipe is available from [4]. Many of the
acoustic models used in the experiments described later in this
paper are available for download.



Parameter Value

Pruning beam width 200.0
Max model pruning 2048
Word end beam width 100.0
Tokens per state 4
Word insertion penalty -4.0
Language model scale factor 15.0

Table 1. HTK decoding parameters used in experiments.

2. TUNING EXPERIMENTS

A series of acoustic models were trained using the previously
described HTK and Sphinx recipes. Both recipes used the
full set of WSJ0 and WSJ1 training data (211 hours). This in-
cluded the long-term and journalist training data. I found this
improved performance on held-out test sets as compared to
training on just the short-term utterances (the SI-284 training
set for example).

In addition, the HTK recipe used the TIMIT corpus for
bootstrapping of monophones and as additional training data.
The Sphinx recipe used the Resource Management corpus to
train an initial acoustic model which was used to force align
the WSJ training data.

The resulting acoustic models were evaluated on the Novem-
ber 1992 ARPA WSJ test set (Nov’92, 303 sentences) and
the San Jose Mercury sentences from the WSJ1 Hub 2 test
set (si dt s2, 207 sentences). Nov’92 was evaluated using the
WSJ 5K non-verbalized 5k closed vocabulary set and the WSJ
standard 5K non-verbalized closed bigram language model.
si dt s2 was evaluated using a bigram language model trained
on the English Gigaword corpus with a vocabulary of the top
60K words appearing in the corpus.

The real-time factor (xRT) was measured on a 2.8GHz
Pentium 4 computer. Unless specified otherwise, the Sphinx-
3 decoder was used for the Sphinx experiments. For HTK to
be competitive with Sphinx with respect to xRT, the newly re-
leased large vocabulary decoder HDecode was used. In other
work [5], I found that while HVite can provide comparable ac-
curacy, it requires much more processing time (20.5% WER
at 23 xRT on si dt s2).

HTK and Sphinx decoding parameters such as beam widths,
language model scale factor, insertion penalty, etc. were tuned
on the Nov’92 test set. In the case of computation related
parameters such as beam widths, parameters were set to pro-
vide the lowest real-time factor while causing only a minor
increase in word error rate. The specific values used are given
in table 1 and 2.

Parameter Value

Pruning beam width 1e-60
Word beam width 1e-30
Phone beam width 1e-60
Fast GMM beam width 1e-80
Max active HMMs 20000
Max active words 20
Max history 100
Word insertion penalty 0.2
Language model scale factor 12.0

Table 2. Sphinx-3 decoding parameters used in experiments.

RO TB Resulting tied-states

200 5500 4005
200 3000 5998
200 1850 8003
200 1250 9991

Table 3. Pruning parameters used for clustering in HTK.

2.1. Number of tied-states

HTK and Sphinx acoustic models were trained varying the
number of tied-states (senones) between 4000, 6000, 8000
and 10000.

In the case of HTK, the exact number of tied-states cannot
be specified, but instead thresholds are given to the phonetic
decision tree state clustering step. The outlier threshold (RO)
was held constant and the threshold controlling clustering ter-
mination (TB) was varied (see table 3).

On the “easy” 5K vocabulary Nov’92 task, there was lit-
tle or no WER advantage in using more tied-states for either
Sphinx (figure 1) or HTK (figure 2). On the “harder” 60K vo-
cabulary si dt s2 task there appears to be a modest advantage
to more tied-states using Sphinx (figure 7), but little differ-
ence using HTK (figure 8).

Of course having more tied-states requires the decoder to
compute more Gaussian likelihoods per observation. This is
shown by the increased xRT factor for the higher numbers of
tied-states in figures 4, 5, 10, and 11.

2.2. Number of Gaussians

Recognition experiments where conducted on models with a
varying number of Gaussians per state. Results for a single
Gaussian per state were omitted from the graphs for clarity. In
all cases the omitted single Gaussian model performed much
worse than the semi-continuous or two Gaussian model.

Both Nov’92 (figure 1 and 2) and si dt s2 (figure 7 and
8) tasks show continued reductions in WER as exponentially
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Fig. 1. Sphinx WER on Nov’92, 3 state HMM without skips.
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Fig. 2. HTK WER on Nov’92.
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Fig. 3. Sphinx WER on Nov’92, 5 state HMM with skips.
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Fig. 4. Sphinx xRT on Nov’92, 3 state HMM without skips.
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Fig. 5. HTK xRT on Nov’92.
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Fig. 6. Sphinx xRT on Nov’92, 5 state HMM with skips.
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Fig. 7. Sphinx WER on si dt s2, 3 state HMM without skips.
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Fig. 8. HTK WER on si dt s2.
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Fig. 9. Sphinx WER on si dt s2, 5 state HMM with skips.
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Fig. 10. Sphinx xRT on si dt s2, 3 state HMM without skips.
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Fig. 11. HTK xRT on si dt s2.
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Fig. 12. Sphinx xRT on si dt s2, 5 state HMM with skips.



more Gaussians are added to the models. Noticeable gains
were made even from 16 to 32 Gaussians suggesting even
more Gaussians might prove advantageous.

The large number of Gaussians per state does not come
for free, the real-time factor increases significantly as more
Gaussians were added (figures 4, 5, 10 and 11).

Using the Sphinx recognizer, further tests were done on
models with 64 and 128 Gaussians. As shown in figure 13,
more Gaussians provided no additional benefit on either the
Nov’92 or si dt s2 test sets. Using so many Gaussians also
slows the recognizer to significantly below real-time (figure
14).

2.3. HMM topology

All models thus far have used the fairly standard HMM topol-
ogy consisting of 3 output states, self-loops, and no skip tran-
sitions. Sphinx models were also trained using a 5-state HMM
with skip transitions. The 5-state topology (along with semi-
continuous models) allows decoding using the older but po-
tentially faster Sphinx-2 decoder.

Using 8000 tied-states, on Nov’92 the five-state model
provided a lower WER for models with up to 16 Gaussians
(figure 3). However on si dt s2, the 5-state only did better for
two Gaussians (figure 9).

The crossover point at which the 3-state model outper-
forms the 5-state model appears to depend both on the dif-
ficulty of the recognition task and the number of tied-states.
This is likely due to the additional modeling flexibility offered
by the 5-state topology. Eventually this flexibility is equaled
or surpassed by the flexibility offered by a large number of
Gaussians per state. This flexibility does not come for free,
the 5-state models are more expensive to compute as shown
in figure 6 and figure 12.

2.4. Semi-continuous versus Continuous

Using the Sphinx-3 decoder and the given tuning parame-
ters, the semi-continuous models offered no advantages. The
WER rate and real-time factors were lower for a continuous
model with two or more Gaussians. To test if semi-continuous
models might have an advantage with the Sphinx-2 or Pocket-
Sphinx decoders, experiments comparing the decoders were
performed on a semi-continuous model with 5 states, skip
transitions, and 8000 tied-states. The Sphinx-2 decoder pa-
rameters were set to provide similar WER to Sphinx-3 on
Nov’92 test data (table 4). PocketSphinx used the same de-
coder parameters as Sphinx-3.

On the Nov’92 test set, PocketSphinx and Sphinx-2 pro-
vided a similar WER but were significantly faster than Sphinx-
3 (table 5). On the si dt s2 test set, PocketSphinx and Sphinx-
2 had a higher WER but were only marginally faster than
Sphinx-3 (table 6).
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Fig. 13. Sphinx WER on Nov’92 and si dt s2.
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Fig. 14. Sphinx xRT on Nov’92 and si dt s2.

Parameter Value

Pruning beam width 1e-7
Word beam width 3e-5
Phone beam width 1e-7
Last phone beam 1e-6
Last phone internal beam 3e-5
Word insertion penalty 0.2
Language model scale factor 12.0

Table 4. Sphinx-2 decoding parameters used in semi-
continuous experiments.



Decoder WER xRT

PocketSphinx 10.2% 0.16
Sphinx-2 10.1% 0.26
Sphinx-3 10.2% 0.42

Table 5. WER and xRT on Nov’92 using different decoders
and semi-continuous models.

Decoder WER xRT

PocketSphinx 38.8% 0.58
Sphinx-2 39.8% 0.70
Sphinx-3 31.1% 0.74

Table 6. WER and xRT on si dt s2 using different decoders
and semi-continuous models.

3. CONCLUSIONS

In this paper, I described recipes which allow easy training
and experimentation using the WSJ corpus and the Sphinx or
HTK speech recognizers. I hope the recipes and the resulting
trained acoustic models will be useful to other researchers.

Tuning experiments were conducted with both recogniz-
ers to test accuracy and real-time performance on small and
large vocab recognition tasks. While I stress results may vary
depending on your recognition task, real-time requirements,
training and decoding parameters, etc., from my experiments
I conclude the following:

• Sphinx-3 and HDecode provide comparable levels of
WER and xRT.

• Increasing the numbers of tied-states beyond 4000 causes
a significant increase in xRT with little reduction in
WER.

• More Gaussians per state reduces WER (but not past 32
per state).

• HMM topology of 3-states with no skips is better than
5-states with skips.

• Continuous models with a small number of Gaussians
have similar xRT but provide much lower WER than
semi-continuous models.

• For semi-continuous models used on small vocabulary
tasks, PocketSphinx and Sphinx-2 provide much better
xRT with a similar WER.

• For large vocabulary tasks, continuous models with a
large number of Gaussians are needed for sufficient ac-
curacy.
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