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ABSTRACT
Eye-typing is a slow and cumbersome text entry method typically
used by individuals with no other practical means of communi-
cation. As an alternative, prior HCI research has proposed dwell-
free eye-typing as a potential improvement that eliminates time-
consuming and distracting dwell-timeouts. However, it is rare that
such research ideas are translated into working products. This pa-
per reports on a qualitative deployment study of a product that
was developed to allow users access to a dwell-free eye-typing
research solution. This allowed us to understand how such a re-
search solution would work in practice, as part of users’ current
communication solutions in their own homes. Based on interviews
and observations, we discuss a number of design issues that cur-
rently act as barriers preventing widespread adoption of dwell-free
eye-typing. The study findings are complemented with computa-
tional simulations in a range of conditions that were inspired by the
findings in the deployment study. These simulations serve to both
contextualize the qualitative findings and to explore quantitative
implications of possible interface redesigns. The combined analysis
gives rise to a set of design implications for enabling wider adoption
of dwell-free eye-typing in practice.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility; Accessibility theory, concepts and paradigms.
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1 INTRODUCTION
Eye-typing is a text entry method that allows users to communicate
using an eye-tracker. The user writes by gazing at individual letter
keys on the keyboard. The written text can be used in a number
ways, for example, it can be used to write messages on social media,
emails and essays, or it can be sent to a speech synthesizer to assist
a user in face-to-face to communication. The ability to write with
their eyes is indispensable for nonspeaking individuals with motor
disabilities that make other means of communication impractical
or impossible. Given its importance it has been extensively studied
(e.g. [23]) and numerous techniques and alternatives have been
proposed in the literature (e.g. [14, 19, 22, 23, 27, 31, 35, 47, 48]).

Traditional eye-typing works by presenting the user with an
onscreen keyboard on a screen mounted in front of the user. The
user’s gaze on the screen is estimated by an eye-tracker, which
in an assistive product that is typically integrated into the screen.
The user writes text by fixating at each desired letter key in turn.
A fundamental problem of this approach is that the system must
be able to interpret whether a user intends to type the key at the
user’s estimated gaze point, or whether they just wish to look at the
key. This is sometimes referred to as the Midas touch problem [6].
Traditional eye-typing tackles this problem using a dwell timeout.
At the moment a fixation is detected on a letter key, the system
triggers a visual timeout indication. If the user maintains a fixation
on the key for a set threshold (typically between 800 and 1,600 ms)
the system will interpret the user’s action as a key press.

Traditional eye-typing is relatively easy to design, implement,
and deploy to users. However, it has three well-known deficiencies.
First, performance is bounded by the dwell timeouts. For exam-
ple, a performance model of eye-typing [14] shows that for any
reasonable operating point, performance is limited to about 20
words-per-minute1 (wpm) at most. Second, it is straining to use
eye-typing as it is unnatural to force the eyes to fixate on a series
of targets on a screen. The eyes are sensory organs foremost and
control organs secondarily [49]. Third, due to the need to manage
dwell timeouts, the act of typing a single letter becomes a high-level
task for the user and this breaks the flow of writing. It is not desir-
able to devote substantial attention to individual letter input when
writing since the act of writing involves transmitting thoughts into
a computer and such thoughts consists of words, phrases, sentences,
and paragraphs.

Dwell-free eye-typing [14] proposes to eliminate dwell timeouts
via statistical decoding. To use dwell-free eye-typing, the user writes

1In this paper entry rate is measured in words per minute (wpm), with a word being
defined as five characters (including space).
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by quickly fixating at each desired letter in sequence. When the user
fixates at some ending location, the user’s gaze fixations are con-
verted to text. Dwell-free eye-typing allows the user considerable
freedom of operation: a user can choose to type a word, a phrase,
or an entire sentence at a time. The paper that proposed dwell-free
eye-typing [14] set out a compelling vision for a dwell-free eye-
typing system: a system that allows users to write characters, words,
and sentences uninterrupted by dwell timeouts. That paper also
demonstrated the human performance potential of such a technique
by studying potential entry rates. Later, this vision was realized
as a working product and deployed as a free software update for
all users of the commercial assistive gaze product Tobii-Dynavox
Communicator.

The central contribution of this paper is a qualitative deployment
study [1] that demonstrates how walking the last mile and trans-
forming a research concept into a working product made available
to end-users in their own homes and familiar working setups can
yield design insights and know-how for improving gaze-based as-
sistive communication. There is very little research work in the
text entry space that (1) is translated into actual products; and (2) is
studied in terms of practical adoption barriers facing end-users. The
most similar work is the path towards commercialization of gesture
typing, originally called “SHARK2” and “ShapeWriter” [51, 52].

We report on a qualitative in situ deployment study of this dwell-
free eye-typing product made available to users reliant on gaze-
based text entry.We visited six nonspeaking eye-typing users highly
familiar with, and reliant on, the conventional eye-typing interface
option in Tobii-Dynavox Communicator. Through observations
and interviews, we analyze positive and negative qualities induced
by the current iteration of dwell-free eye-typing and identify bar-
riers for adoption that need to be overcome to ensure widespread
adoption of the technique.

To complement this qualitative deployment study, we carry out
computational simulations to understand the implications of cer-
tain design parameter choices that were either suggested by users
or could potentially alleviate some of the adoption barriers we
observed in the user study.

In summary, this paper makes the following contributions:

• We report on a qualitative in-situ deployment study of a
dwell-free eye-typing interface made available to users re-
liant on a commercial eye-typing product in their daily lives.

• Using computational simulations directly inspired by find-
ings in the deployment study, we explore a range of design
parameters that could mitigate issues identified in the user
study.

• We identify five current adoption barriers of dwell-free eye-
typing and distill design implications to assist future work
in this space.

2 RELATEDWORK
Conventional dwell-based eye-typing has been extensively stud-
ied for over 40 years [23]. Majaranta et al. [22] studied the effect
of allowing users to modify the dwell-timeouts and found that
under highly controlled conditions, it was possible for users to
achieve an entry rate close to 20 wpm. As later demonstrated by a
human performance model [14], this operating point is probably

the upper-bound for dwell-based eye-typing assuming no use of
word prediction. Alternatives to dwell-based eye-typing have also
been investigated, for example Dasher [46, 47], which results in
entry rates similar to that of dwell-based eye-typing with adaptive
dwell-timeouts [30, 31, 35].

Dwell-free eye-typing [14] eliminates dwell-timeouts entirely.
The original vision was an eye-typing interface that allows users
to write text of variable length unconstrained by dwell-timeouts
whatsoever [14]. As noted in this prior work [14], such a system
should in theory be possible to design since languages are highly
redundant [34] and therefore a statistical decoder should be able to
search for plausible letter key combinations guided by a language
model. This is reminiscent to how, for example, continuous speech
recognition [25] decodes a user’s acoustic signal into text.

A more closely related example is early work on fixation tracing
that used hidden Markov models to perform isolated word recogni-
tion among a set of 1,000 words [32, 33]. Finally, another related
example is gesture keyboard technology [8, 17, 50, 51]. The cen-
tral idea of the gesture keyboard is to allow the user to articulate
gestures for words by initially tracing the words on an onscreen
keyboard (typically using a finger). After prolonged use, users learn
to recall such gestures directly from motor memory and thereby
transition from slow closed-loop tracing to fast open-loop ges-
turing [8, 17, 50, 51]. Gesture keyboards can achieve this using a
decoder that infers the user’s intended word given the gesture the
user has articulated over the keyboard layout [8, 17, 50].

Dwell-free eye-typing [14], as originally envisioned, is differ-
ent in that it allows the user to continuously gaze at a series of
characters that may comprise a few letters, a word, a phrase, or a
sentence. This minimizes the use of dwell-timeouts and can there-
fore, in theory, maximize performance. Prior work [14] found that
using a simulated decoder, the empirical human performance po-
tential of such dwell-free eye-typing was on average 46wpm with
able-bodied users. However, no actual decoder was used in the
original paper. The same paper also demonstrated through a hu-
man performance model that for every conceivable operating point,
dwell-free eye-typing will be faster than dwell-based eye-typing. At
the optimal operating point of conventional eye-typing, dwell-free
eye-typing is potentially more than twice as fast [14]. However,
actual practical entry rates depend on the performance of the statis-
tical decoder, the individual user, and the user’s context, including
their eye-tracking setup.

Several other works have later used the term ‘dwell-free’ (e.g. [19,
26, 27]), however, these techniques use relatively simple models for
decoding and rely on explicit word separation, which enforces a
hard upper bound on achievable performance. However, notably
Pedrosa et al. [27] studied achievable entry and error rates with
their system with six users with disabilities in a lab study.

The existing literature has focused heavily on entry and error
rates with controlled stimuli (e.g. [21, 41]), presentation styles
(e.g. [13]) and text entry tasks (e.g. [4, 43]). In this work we in-
stead focus on barriers for adoption by studying how users engage
with a dwell-free eye-typing feature in their ordinary assistive gaze
communication setup, which they rely on in their daily lives. Such
a deployment study [1] of HCI research translated into a product
opens up the potential for rich and unique feedback to the research
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community that is unavailable unless a potential research solu-
tion is made to walk the last mile. While user adoption of HCI
products, including text entry methods, have been studied before
(e.g. [2, 9, 11]), we believe such in situ studies are particularly impor-
tant for dwell-free eye-typing as such a setup relies on a complicated
joint human-machine system consisting of, among other things,
a decoder, an eye-tracker, a speech synthesizer, an elaborate user
interface and, as we shall see, the expectations and needs of the
individual user reliant on such technology. Many critical design
parameters for user adoption are therefore likely to only be observ-
able by carrying out a deployment study of an actual product made
available to end-users reliant on such a technique for everyday
communication.

3 DWELL-FREE EYE-TYPING PRODUCT
INTERFACE

The dwell-free eye-typing approach deployed to end-users closely
follows the approach proposed in prior work [14]. As part of a
commercial gaze assistive communication product, Tobii-Dynavox
Communicator, a dwell-free eye-typing feature is available as a free
software update. Once installed, it allows access to a different key-
board than the ordinary eye-typing keyboard. This new keyboard
implements dwell-free eye-typing by allowing users to write char-
acters, words, or sentences by sequentially gazing at the intended
onscreen keyboard keys that comprise the intended text (Figure 1).
For example, a user can write “the cat sat” by sequentially gazing at
the keys T-H-E-[space]-C-A-T-[space]-S-A-T. When the user gazes
at an individual key the letter lights up as a visual indication to
the user that the key has been registered as an observation by the
system. Importantly, however, users do not have to fixate on a key
for a set duration for the key to be registered. Once the user fixates
on the output area the system infers the user’s intended text from
the sequence of registered observations and presents the resulting
text to the user in the output area. The keyboard uses the QWERTY
layout.

The interface allows users to perform error correction using
several methods. First, once the text has been inferred it is placed
in the output area (Figure 2). Above the output area the system
displays the next best hypotheses to the user. The user can choose
among these hypotheses by fixating on the corresponding Select
key. To assist the user, the part of the alternative text hypotheses
that are different to the text in the output area is rendered in a
distinct text format. Second, the user can enter a fine-grained error
correction interface by fixating on the Correct key to the right of the
output area. This opens up a detailed correction interface (Figure
3). Here the user can select the individual words in the recognized
phrase by fixating on them. Once a word has been fixated on, the
user can either choose an alternative word candidate or enter a
dwell-based interface that allows the user to manually enter the
desired word (via the ABC key).

Dwell-free recognition is implemented as a statistical decoder
that uses Bayesian inference to search a very large hypothesis
space of possible letter sequences. The statistical decoder receives
an observation sequence of gaze points from the eye-tracker and
searches for the most likely hypotheses of the user’s intended text.

q w e r t y u i o p !

a s d f g h j k l ?

z x c v b n m , . ‘

SpaceClose 
Keyboard

Change to 
eye-typing

Delete 
Word

Delete 
Sentence

Output Area

Speak

Figure 1: A schematic illustration of the dwell-free eye-
typing keyboard interface in Tobii-Dynavox Communica-
tor. A user’s recognized text is shown in the Output Area.
The Close Keyboard key closes the dwell-free eye-typing key-
board application. The Change to eye-typing key changes the
mode from dwell-free eye-typing to regular (dwell-based)
eye-typing. The Delete Word and Delete Sentence keys remove
the last word and last sentence respectively from the output
area. The Speak key speaks the text in the output area via
text-to-speech.

Speak

The cat sat

The cat bat Select The cat mat Select The cat rat Select

Correct

Figure 2: A schematic illustration of the dwell-free keyboard
interface after the user has written “The cat sat”. The user
can quickly correct the output by choosing among three
alternative text hypotheses. To assist the user, the differences
in these alternatives compared to the text in the output area
is made distinct via text formatting. The user can choose one
of the alternatives by fixating on the Select key next to it. If
none of the options are correct, the user can fixate on the
Correct key to open a dedicated error correction interface.

This search is guided by a likelihood model of a gaze point cor-
responding to an individual key on the keyboard and a language
model providing prior beliefs of the user’s intended text, reminis-
cent to how a speech recognition decoder is implemented. To make
the search tractable, we employ beam pruning to filter out partial
hypotheses that have a low probability. The search process is guided
by a character-level language model and each generated word is
reassessed by a word-level language model. The complete tech-
nical details are published in the documentation for two granted
U.S. patents [15, 16].
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Speak

rat

ABC
The cat sat

sat car VAT OK

Cancel

Figure 3: A schematic illustration of the dedicated error cor-
rection interface. The user can either fixate on an individual
word in the output area or fixate on the left/right arrow keys
to select an individual word that needs modification. Once
an individual word is selected the interface will show alter-
native word hypothesis for this word. In addition, a pop-up
menu appears (not shown in the figure) that allows the user
to delete the selected word. The ABC key opens up a regular
(dwell-based) eye-typing interface to input the desired word.

4 QUALITATIVE STUDY
We recruited six participants from among the company’s customers.
All participants were literate but could not speak. Three partici-
pants had amyotrophic lateral sclerosis (ALS) and three had cerebral
palsy (CP). All used conventional eye-typing as their primary com-
munication method. Four participants identified as men, two as
women.

We informed participants about the purpose and procedure of
the study during recruitment. We obtained informed consent before
our visit. At the visit, the purpose of the study was reiterated by
a familiar support team member from the company and informed
consent was reconfirmed. This support team regularly visited the
customers to help with technical problems or modifications of the
product. Each visit lasted several hours and begun with a discussion
of on-going issues and concerns with their set-up unrelated to dwell-
free eye-typing. The participant then calibrated the eye-tracker and
demonstrated their currently preferred setup for gaze writing.

We then introduced dwell-free eye-typing and explained how
it works. We explained to the participants that the key they are
currently looking at would light up. Participants were instructed
that they should aim to light up each key in sequence when entering
their text but they did not have to dwell on the keys. Participants
were also told that they should not worry if unwanted keys lit up.
Participants then wrote a few words and an example sentence using
dwell-free eye-typing. This was followed by the participant writing
a set number of test sentences. After each sentence, the participant
was given entry and error rate feedback. Next, we showed the
participant the error correction interface and asked them to carry
out a few corrections or edits of previously input text.

After writing using the dwell-free feature, we discussed design
features with the participants. Topics included accuracy, error cor-
rection, positive features, negative features, additional features, and
differences in features compared to their existing set-up (which
were customized to the individual). Finally we collectively reflected
on the experience.

4.1 Individual Observations
We briefly summarize individual observations here to provide a
better context of the study environment and study activities. Key
findings across all participants are reviewed in the next subsection.

4.1.1 Participant A. Participant A identified as male, had ALS and
was in the 40–50 age range. He used a QWERTY keyboard with
traditional dwell-based eye-typing but experienced considerable
difficulty in accurately controlling the gaze cursor for traditional
eye-typing. We observed frequent sporadic and unintended rapid
ballistic saccades. He had difficulty in reaching intended fixation
points as the saccades tended to be too imprecise, requiring frequent
closed-loop re-fixation attempts. Further, he had difficulty fixating
at the center of a key (within a region of error) for short durations
(approximately 800–1200 milliseconds).

The eye control difficulties resulted in severe difficulties in using
the traditional dwell-based eye-typing interface. Eye-typing require
the user to fixate at an intended location for a preset time duration.
As Participant A experienced great difficulties in maintaining a
fixation for the required duration, this often resulted in the dwell
timeout for his intended key being reset. This was sometimes exac-
erbated by an inadvertent fixation on a neighboring key, again due
to limited eye control.

As a result of limited eye control, overall entry rate was very
low, around 2 or 3 words per minute. Due to the low entry rate, it
was unsurprising that there was a heavy reliance on word predic-
tions and a strong utilization of word predictions, when they were
suitable. The overall typing pattern was to input a single letter and
immediately scan all word predictions, only attempting to input
another letter if all word predictions were unsuitable. This strategy
was, however, unreliable due to limited eye control, which relatively
frequently resulted in an inadvertent selection of an unintended
word prediction. Participant A was very adept at selecting succes-
sive word predictions. However, due to poor eye control this also
frequently resulted in selecting unwanted word predictions.

Dwell-free eye-typing was possible but with very poor recogni-
tion results. Due to limited eye control there were two behavioral
gaze control issues which the statistical dwell-free eye-typing de-
coder could not handle: (1) difficulty in fixating on the intended
key, which resulted in him eventually giving up and proceeding
to the next key; and (2) a difficulty on retaining a fixation on the
intended key, which frequently resulted in an oscillating pattern
where two or three neighboring keys were activated repeatedly in
close succession, for example AZAZAZAZAZAXAAZA.

Dwell-free eye-typing, as it is currently designed, does not work
well for this participant. When asked why he did not use dwell-free
eye-typing, the response was that the letters were too small (and
thus difficult to fixate on) and “it feels like guessing”, a reference to
the poor recognition rate.

4.1.2 Participant B. Participant B identified as male, had CP and
was in the 30–40 age group. He used a QWERTY keyboard with
traditional dwell-based eye-typing. He understood the overall eye-
typing and communication product very well and had reconfigured
it extensively to fit his needs. He achieved a high quality calibra-
tion with the eye-tracker and was able to eye-type at a relatively
high speed. He relied heavily on word predictions but did not use
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sentence predictions, which were also presented by the traditional
eye-typing system. He had difficulty fixating for a long time on
individual letters, which frequently resulted in early unwanted ter-
minations of the dwell-timeout. He made extensive use of word
predictions and adapted a strategy of typing a letter and then scan-
ning the word suggestions.

Participant B was able to use dwell-free eye-typing at a relatively
high speed (in relation to standard eye-typing). However, he did
not use dwell-free eye-typing normally. He was able to write the
three test sentences with few errors. In response to a question on
why he did not use dwell-free eye-typing he responded that “[he]
didn’t get on with it.”

By probing deeper the following issues and areas of improve-
ment were unraveled. First, the system integration of dwell-free
eye-typing was poor. Participant B showed us an example of typ-
ing a Facebook message using his own setup, which had superior
integration. He suggested including a function to copy text to the
clipboard, making the keyboard as similar as possible to the existing
eye-typing keyboard, and to visualize the user’s eye gaze using a
big round cursor.

The preferred setup for dwell-free eye-typing according to Partic-
ipant B would encompass: (1) full system integration (in particular,
allowing sending text to arbitrary applications); (2) highlighting
the entire letter key and letter when a user is gazing at it; and (3)
allowing a tolerance such that a dwell-free eye-typing user would
not need to look at the exact letter and only need to select a letter
in the vicinity of the intended key.

4.1.3 Participant C. Participant C identified as male, had CP and
was in the 40–50 age group. He used anABC (alphabetical) keyboard
with traditional dwell-based eye-typing. He communicated using a
screen with a built-in eye-tracker connected to his wheelchair via a
stand. Due to involuntary movements, the chair and the stand fre-
quently moved around, which was exacerbated by poor mechanical
damping of the eye-tracking camera mount. His head frequently
moved in and out of the tracking box. Despite this, his eye-tracker
calibration was of a high quality.

Participant C was reliant on eye-typing and had difficulty hit-
ting the precise letters. However, he did not oscillate between two
neighboring letters. His eye gaze moved with very rapid saccades
across the keys on the keyboard. As a result of the difficulty in
selecting precise letters, dwell-free eye-typing performance was
very poor.

He stated he believed dwell-free eye-typingwould bemore useful
if it had a tolerance such that a dwell-free eye-typing user would
not need to look at the exact letter and only need to select a letter in
the vicinity of the intended key. He would also prefer if it provided
integrated word predictions.

4.1.4 Participant D. Participant D identified as male, had ALS and
was in the 40–50 age group. He used a QWERTY keyboard with
traditional dwell-based eye-typing. He was able to accurately fixate
at visual targets and his eye gaze moved quickly and precisely
between the keys. However, he experienced difficulties in managing
a fixation at a letter key for a fixed duration. He mentioned he
experienced this difficulty in all his dwell-based interaction and
had found that increasing the dwell-timeout from 800 ms to above
900 ms mitigated some of the difficulty. He had a preference for a

slower dwell-timeout. When using traditional eye-typing he relied
heavily on word predictions.

Participant D was aware of the dwell-free eye-typing feature
and was very fast and accurate when using dwell-free eye-typing.
However, he did not use it as his main keyboard due to a number
of issues:

(1) He would like it to look and behave as the regular traditional
eye-typing keyboard and he would want to be able to fluidly
switch between dwell-based and dwell-free keyboard entry,
which currently was not possible.

(2) He would like to view the current system hypothesis of his
intended text as he is writing. He would also like to view
word predictions for dwell-free eye-typing.

(3) He would prefer to relax the requirement of selecting each
letter in the intended word. He felt that if it would suffice
to fixate briefly in the vicinity of the intended letter. This
would provide a more relaxing experience when writing
using dwell-free eye-typing.

(4) He was concerned about the treatment of punctuation and
felt that there should either be a way to indicate to the system
what the intended punctuation should be (before recognition)
or there should be editing functions that make it easy to
ensure accurate punctuation following recognition.

(5) At its current state and given his current experience, he
felt dwell-free eye-typing was more suitable for speaking
(via text-to-speech) than writing text intended to be read by
someone.

4.1.5 Participant E. Participant E identified as female, had ALS
and was in the 60–70 age group. She used a QWERTY keyboard
with traditional dwell-based eye-typing. She easily obtained a high
quality calibration and exhibited excellent eye control. She could
dwell-free eye-type fluently, and became quite attached to it during
the testing session. However, interestingly, she had not seriously
tried it before due to “lack of confidence”.

She preferred flexible letter selection, if possible, where there
would be no need to precisely select the intended letter. She liked an
idea of splitting the message window into multiple end-of-utterance
sections with specific punctuation symbols. For example, fixating
on a comma key would trigger a decode of the previous observation
sequence and append a comma at the end.

We asked her to consider whether it would be useful to inte-
grate word prediction into the dwell-free eye-typing process or,
alternatively, to have the system reveal the current active phrase
or sentence (the system’s best hypothesis of the user’s intended
text given the current observation sequence of gaze input). She was
unsure whether this would be useful or not.

Overall, she was happy with dwell-free eye-typing and could
use it with very few mistakes. The major flaw she observed was
the lack of integration, which made it impractical for her daily
communication tasks.

4.1.6 Participant F. Participant F identified as female, had ALS
and was in the 40–50 age group. She used a QWERTY keyboard
with traditional dwell-based eye-typing. She easily achieved a high
quality calibration and exhibited excellent eye control. Shemastered
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dwell-free eye-typing easily and could write a wide range of phrases
without any errors.

She would prefer more error tolerant recognition and was in
particular in favor of language model adaptation so that the system
would be more apt to recognize her phrases and style of writing.
Further discussion about this revealed that by error-tolerance she
meant the decoder being resilient to input errors in the current
style of interaction (in which users were instructed to obtain at least
one gaze point on each intended key). Additional error-tolerance
in a form that removed the need to gaze at a precise key would be
“amazing” but she did not deem this a critical feature.

She was unaware there even existed an error correction interface
for the dwell-free keyboard. Upon trying it she requested a more
efficient error correction interface that allowed her to directly delete
and insert words.

4.2 Key Findings
We will now review the findings based on the interviews and ob-
servations. We analyzed the results based on a model consisting
of four themes. First, the target audience: there is a wide range of
conventional eye-typing users and we wanted to understand if all
segments of conventional eye-typing users were able to, or could
be made able to, access dwell-free eye-typing. Second, their current
strategies in communicating and overcoming existing barriers in
conventional eye-typing. Third, efficacy of dwell-free eye-typing
as an interaction technique. Fourth, barriers to adopting dwell-free
eye-typing, including barriers that were solely due to the specific
product realization. We encoded our notes and recordings and used
affinity diagramming guided by the above four themes to arrive
at clustered issues. For clarity, we structure these results as key
findings.

4.2.1 User Groups. The participants can be subdivided into three
user groups. The first group consists of expert users. They are
well-versed with the dwell-free eye-typing technique, yet for vari-
ous reasons they do not utilize it to its full potential. The second
user group captures intermediate users with potential to become
expert users. They can potentially use dwell-free eye-typing to a
level which would allow them faster communication rates overall.
However, they are currently not at this level. The third user group
consists of users that exhibit highly noisy gaze control. For various
reasons, including potentially rectifiable issues such as tracking
error or lack of sleep (Participant A), users in this group struggle
with gaze control in one or more of the following aspects: (1) diffi-
culty in precisely fixating at an intended gaze location; (2) difficulty
in maintaining a fixation at an intended gaze location for a set
duration; and (3) difficulty in maintaining a fixation for a very short
duration in the order of tens of milliseconds.

4.2.2 Word Prediction Reliance. There was a high reliance on word
predictions. This behavior cuts across all three user groups. This
is unsurprising as good word predictions overall increase entry
rate when users are rate-limited, which is the case when using
traditional dwell-typing. It is evident all users have had extensive
practice with word predictions and are often able to anticipate a
correct prediction. This learned behavior acts as a user investment

of effort in mastering the existing traditional dwell-dependent eye-
typing interface and may increase friction when transitioning to
the dwell-free keyboard as currently designed (i.e. without word
predictions).

4.2.3 Dwell-Free Eye-Typing is Effective as a Text Entry Method.
Among expert and intermediate users, the ability to fluidly use
dwell-free eye-typing with minimum effort was high. These users
were able to use the existing interface to quickly and accurately
articulate their intended text with low effort. It was noticeably
easier to communicate with these users when they used dwell-
free eye-typing. However, many other issues beyond text entry
performance precluded adoption of dwell-free eye-typing.

4.2.4 No Graceful Degradation. When the dwell-free eye-typing
system output an incorrect inference of the user’s intended text, the
resulting text was often nonsensical and impossible to fix without
deleting all the text and starting over. This frustrated users and
increased their hesitation to use dwell-free eye-typing.

4.2.5 Ineffective Error Correction Interface. The error correction
interface was not effective. There were often very few alternative
words and they were often nonsensical or irrelevant. In addition,
users had to take a leap of faith and invest considerable effort in
changing to a special error correction mode and thereafter dwell
on individual words before they were able to ascertain if there even
were any suitable alternative word candidates available.

4.2.6 Lack of Transparency. Users perceived dwell-free eye-typing
as “magic” and in the word of one user, “it feels like guessing”.
Occasional nonsensical results exacerbated this perception and the
nearly always uninformative error correction interface unfortu-
nately further reinforced this perception.

4.2.7 Lack of Confidence. In general, the participants lacked con-
fidence in using dwell-free eye-typing. This prevents adoption of
dwell-free eye-typing due to at least two observable factors. First,
both expert and intermediate users underestimated their own per-
formance. This is somewhat expected as users are generally poor at
estimating their own objective performance. Second, there was re-
sistance to change, which resulted in participants being surprised by
their own performance when pushed to try dwell-free eye-typing.
The resistance to change is rational as there is in general a trade-off
between perceived, or real, effort required to learn a new tech-
nique versus a (positive) perceivable net gain in performance. This
trade-off decision is further muddled by additional confounding
variables that exacerbate the learning process for dwell-free eye-
typing: a less fluid experience, poor integration, and poor support
for interleaving existing typing practices, such as reliance on word
predictions.

4.2.8 Poor Integration. The keyboard implementation of dwell-free
eye-typing within the user interface suffers from poor integration.
For example, it is not possible for users to seamlessly send text to
external applications such as Facebook. It is also not possible to
seamlessly switch between eye-typing and dwell-free eye-typing
when, for example, there is a need to type a proper name or pass-
word. In addition, there is no easy copy-paste functionality within
the dwell-free eye-typing keyboard.
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5 COMPUTATIONAL SIMULATIONS OF
DESIGN OPTIONS

Taken together, the findings from the qualitative deployment study
suggest that the first product realizing dwell-free eye-typing may
have been offering users too big a step change in requiring dwell-
free input of entire sentences. This was simply too far from the
deterministic and word-at-a-time input process users were already
highly accustomed to. Further, recognizing entire sentences, includ-
ing guessing unspecified upper/lower case and difficult to predict
punctuation symbols, led to unacceptably high recognition error
rates.

The deployment study generated many ideas on how one might
redesign the user interaction and recognition system to address
problems identified by users. Developing and testing a large num-
ber of interface features with users, especially with actual gaze
users, would be an expensive undertaking. Further, not only are
there a number of possible new features, but also some features
(e.g. word suggestions) have multiple variants (e.g. number of sug-
gested words). In such cases, offering more interface options is in
direct competition with offering users larger onscreen targets.

We therefore conducted computational simulations to better un-
derstand the potential performance of various redesign options. We
investigated four design changes: (1) length of observation sequence
(one word, two words, etc.); (2) letter locking—dwelling on individ-
ual keys while using dwell-free eye-typing; (3) offering alternative
word recognition hypotheses; and (4) offering word predictions
prior to dwell-free input. We also investigate the performance of
combining the most promising features in tandem.

5.1 Approach
To investigate these design parameters, we first collected examples
of dwell-free eye-typing. Our data collection interface first had users
calibrate the eye-tracker. The interface then displayed a random
sentence from the Enron mobile dataset [42]. The user wrote the
sentence by looking at each letter in the sentence, including spaces.
After dwelling on a stop button, the user could either retry the same
sentence (discarding the data), or move to a new sentence. The data
collector did not perform recognition; it only recorded eye-tracking
data. In total, we collected 582 sentences from 24 users who were
not motor-impaired.

Using our dwell-free decoder, the Character Error Rate (CER)2
on this data, ignoring case but including punctuation, was 6.8%.
We converted this data into a format compatible with the Veloci-
Tap decoder [44]. This research decoder was originally designed
for touchscreen typing data. The decoder uses a two-dimensional
Gaussian centered at each key to model the distribution of possible
keys for each touch observation. Configurable penalties allow the
decoder to delete or insert observations. The decoder performs a
beam search for the most likely recognition hypotheses guided by
a character and word 𝑛-gram language model. We used the same
character and word language models reported in prior work [44].
For full details on the decoder’s operation see prior work [36].

2Character error rate is here defined as the minimum number of character insertions,
deletions and substitutions necessary to transform the decoded text into the source
text, divided by the number of characters in the source text and multiplied by 100.

We adapted the VelociTap decoder to recognize our eye tracker
data. We used the research decoder because it has features not
present in our dwell-free decoder including the ability to simulate
the performance of a user that makes perfect use of interface fea-
tures such as recognition alternatives or next word suggestions.
Our deployed dwell-free decoder has features to help delete short
fixations and to insert multiple letters based on a single fixation
(e.g. the letter “o” in “food”). These two features substantially im-
prove accuracy on dwell-free input (without these features CER
doubles). After adding these features to the research decoder, we
obtained a similar CER of 7.4% compared to the dwell-free decoder.

The collected data was a continuous trace through all the letters
in a sentence including spaces. However, for the purposes of the
remaining experiments, we required sentence traces where each
trace was segmented according to the corresponding word in its
reference text. We used the research decoder to force align the
traces to the reference transcripts. 491 of the 582 eye traces force
aligned successfully. The traces that failed to align may have had
input errors causing a mismatch in the number of words compared
to the reference. Note that this means the force aligned dataset is
somewhat easier on average than the complete dataset.

In our experiments, we played back the eye trace of each sentence
to the research decoder one segment at-a-time. In most experiments
(aside from Experiment 1), a segment corresponded to a single word.
After every segment, we queried the recognizer for the most likely
recognition results given the noisy eye data and any previous rec-
ognized text. We assume a simulated user that selects the correct
option if available, otherwise the user selects the most likely (in-
correct) option and carried on (i.e. we did not simulate having an
error correction feature such as backspace). Note that this means
that recognition errors earlier in a sentence may negatively impact
subsequent predictions due to corrupting the decoder’s language
model context. We report the following metrics:

• Final sentence CER — The character error rate of the final
text for a sentence. This will be greater than zero when the
recognition results presented to the user did not allow exact
writing of the target reference text.

• Recognition accuracy — How often the top recognition
result was the target word. If the interface provided multi-
ple recognition hypotheses, this was how often any of the
hypotheses was the target word.

• Recognition accuracy ignoring punctuation — Similar
to the previous metric but ignoring any end of word punc-
tuation (comma, period, exclamation point, and question
mark).

5.2 Experiment 1: Input Chunk Size
The current dwell-free keyboard uses sentence-at-a-time input.
The statistical decoding process can instead operate on smaller
chunks of input such as one or two words. This may provide a more
familiar text entry method and could make correcting errors easier
since corrections could be performed in a smaller amount of text.
However, shorter chunks may be fundamentally harder to recognize
due to a recognition decision being based on less information.

We simulated entry of various input chunk sizes. A chunk size
of one corresponds to entering a single word prior to requesting
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Input chunk size (words) entire
1 2 3 4 5 6 sentence

Final sentence CER (%) 7.46 6.98 6.85 6.69 6.58 6.63 6.66
Recognition accuracy (%) 76.52 61.46 48.77 36.82 26.73 21.96 10.59
Recognition accuracy ignoring punctuation (%) 91.62 87.69 84.22 80.75 77.99 77.19 73.12

Table 1: Final sentence character error rate and how often recognition events were correct as the number of words in the input
was increased.

Locked letters
None First Last First and last

Final sentence CER (%) 7.46 7.12 4.88 4.41
Recognition accuracy (%) 76.52 77.22 86.92 87.29
Recognition accuracy ignoring punctuation (%) 91.62 92.41 89.76 90.22

Table 2: Final sentence character error rate and how often recognition events were correct depending on which letters were
locked based on the known reference word.

recognition, a size of two corresponds to entering two words prior
to recognition, and so on. Note that for this experiment, we assumed
that the location of the spaces between words was known. In the
auspices of a user interface (UI), this would require a UI action,
such as dwell-clicking on a space key. To support chunk sizes of
two or more, the UI would need not only a space action, but also
a separate action to signal recognition. Alternatively, recognition
could be streaming with a result shown somewhere in the UI (e.g. as
a prediction above the keyboard). This prediction would likely still
require explicit confirmation (e.g. by dwell-clicking it).

As shown in Table 1, providing more words at one time improved
recognition accuracy. This may be because it allows the recognizer
to make a better global decision taking into account the overall
sequence of words. It may also be due to the known (and correct)
spaces reducing the final sentence error rate. While bigger chunks
were better, this presumes we know with certainty how to segment
observations into words.

We also measured how often recognition was completely cor-
rect. This measures how often users would experience a dwell-free
input experience requiring no error correction. We measured this
including and ignoring punctuation. The latter estimates the utility
for someone using dwell-free for person-to-person communication
rather than written communication. As expected, the larger the
input chunk size, the less likely the decoder was able to infer the
intended text completely correct. Notably, even with the most con-
servative input size of a single word and ignoring punctuation, only
9 out of 10 dwell-free inputs resulted in the correct word. This indi-
cates that simply moving to word-at-time dwell-free input would
not provide as accurate an experience as the deployment study
participants desired.

Ignoring end of word punctuation increased accuracy markedly
(e.g. from 77% to 92% for a chunk size of one). These characters were
particularly hard to recognize as they are not very predictable under
the current 𝑛-gram language model. A deficiency of such 𝑛-gram
models is that contextual clues, such as the first word of a sentence

(e.g. a sentence starting with “why”) may be out of the model’s
context by the end of the sentence. Using a neural network language
model may help as these models are better at modeling long-range
dependencies and other latent factors. A further problem may be
that punctuation keys were near each other on the keyboard. This
leads to confusability in the keyboard’s probability model. Thus
it may be desirable to separate punctuation keys on the onscreen
keyboard.

5.3 Experiment 2: Locked Letters
A possible hybrid input method might have a user dwell-click on
the first letter of each word before performing a dwell-free trace
over the remaining letters. Alternatively, the user could perform
a dwell-free trace of a word and then dwell-click the final letter.
This would allow the final dwell-click to serve not only to help the
decoder, but also to request recognition. We simulated these options
by replacing the first and/or last observation of every word with an
observation that was locked to the known letter in the reference
word (i.e. the decoder could not misrecognize locked letters). This
experiment used an input chunk size of one word.

As shown in Table 2, locking letters improved accuracy in all
cases. Locking the first letter only improved accuracy slightly. The
improvement for locking the last letter was striking. Part of this
gain was driven by the fact that many errors were from incorrect
recognition of punctuation after the word (comma, period, question
mark, and exclamation point). However, even ignoring punctuation
we still found accuracy improved by 10% by locking just the last
letter.

A possible redesign would be to use the dwell on the last letter
to trigger recognition for the previous dwell-free input event. This
would offer the benefit of the added accuracy, but it does assume
the user can accurately perform a conventional dwell-click on an
individual key. It also means the user will finish by looking at a
different location from where recognition results normally appear
(i.e. above the keyboard).
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Recognition slots offered
1 2 3 4 5

Final sentence CER (%) 7.57 6.39 5.56 5.19 4.97
Recognition accuracy (%) 76.23 80.31 83.41 85.06 85.89
Recognition accuracy ignoring punctuation (%) 91.58 94.06 94.68 94.92 95.01

Table 3: Final sentence character error rate and how often the correct word was in the set of recognition results for increasing
number of slots populated with the most likely recognition hypotheses.

Slots offered
(next word / recognition n-best list)

1 2 3 4 5

Final sentence CER (%) 7.36 6.22 5.39 5.00 4.78
Recognition accuracy (%) 76.89 80.69 83.95 85.72 86.55
Recognition accuracy ignoring punctuation (%) 92.28 94.47 95.30 95.71 95.79
Next word prediction used (%) 25.28 31.56 36.09 38.57 41.44

Table 4: Final sentence character error rate and how often the correct word was in the set of recognition results for increasing
numbers of slots. The same number of slots were used for the next word predictions prior to input and for recognition
alternatives after input.

5.4 Experiment 3: Recognition Alternatives
We simulated word-at-a-time dwell-free input with a variable num-
ber of recognition alternatives after each word recognition. As
shown in Table 3, providing not only the best recognition hypothe-
sis, but also several of the most probable competing alternatives,
improved accuracy. The majority of the gains were seen by allow-
ing the user to choose between the top-3 recognition results. By
offering the top-3 results, 95% of words could be written success-
fully (ignoring punctuation). However, this would still leaves 1 in
20 words needing some other error correction strategy, such as
reverting to dwell-based input.

A possible redesign might append the best recognition result to
the keyboard text result area. The appended text would be visually
annotated to allow easy review by the user in a “safe” area that does
not trigger further actions. Below the keyboard, we could present
dwell buttons for the other top recognition results. We could also
include a button to delete the previous recognition to allow the user
to reattempt dwell-free input (or fallback to dwell-based typing).

5.5 Experiment 4: Next Word Prediction +
Recognition Alternatives

Prior to dwell-free input of a word, prediction slots above the on-
screen keyboard could be populated with words that might follow
the current text. This allows the user to simply dwell on the desired
word rather than risk a mistake during dwell-free input. In the
deployment study, we found this was a popular feature used by
participants in their conventional dwell keyboard.

We simulated this feature by first predicting the most likely
words prior to each word in the force-aligned data. Note that the
simulation only proposed word predictions without punctuation,
thus it was inherently unable to predict words with commas, peri-
ods, question marks, or exclamation points. If the desired word was

present, we assumed the user selected it. If the desired word was
not present, we assumed the user provided the dwell-free input.
This input was recognized and the user could then select from the
𝑛-best recognition results (similar to Experiment 3).

As shown in Table 4, the next word prediction feature was fre-
quently able to predict the word before input. If three predictions
were offered, 36% of all words could be entered using this feature.
Comparing with Table 3, we also observe a small reduction in final
sentence CER as well. This resulted from the next word predictions
sometimes allowing the user to avoid an uncorrectable error that
would have occurred if they had used dwell-free input for a word.

5.6 Combining Letter Locking, Word
Predictions, and Recognition Alternatives

One possible interface design would be to offer next word predic-
tions prior to the start of input of the user’s next desired word. If
dwell-free input was required, the user would generate a continuous
eye trace through all the letters of a word with a final dwell-click
that locked the final letter of the word. This event would signal
to the decoder that it should populate a set of 𝑛-best recognition
hypotheses that the user can select from. These recognition hy-
potheses can be located at the top of the keyboard area, or they can
appear next to the final dwell-clicked character. The latter approach
might afford a speed advantage as the recognition hypotheses can
be displayed while the dwell-time was still being completed for
the final character. If the desired word is shown, the user can then
relocate their gaze to the desired word to start the dwell-click con-
firmation period for that word. The disadvantage of this approach
is that it would be a departure from where users are currently
accustomed to seeing predictions (i.e. above the keyboard).

As shown in Table 5, the combined design had the lowest sen-
tence CER of any method tested. If three slots were available for
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Slots offered
(next word / recognition n-best list)

1 2 3 4 5

Final sentence CER (%) 4.63 3.12 2.79 2.55 2.44
Recognition accuracy (%) 87.91 92.86 93.89 94.59 94.92
Recognition accuracy ignoring punctuation (%) 91.13 94.39 95.21 95.42 95.63
Next word prediction used (%) 22.03 27.73 32.62 35.17 38.04

Table 5: Final sentence character error rate and how often the correct word was in the set of recognition results for increasing
numbers of recognition alternative hypotheses. The same number of slots were used for the next word prediction prior to
input and for recognition alternatives after input. We assume the user dwelled on the last character of a word to lock it.

predictions and recognition hypotheses, the final CER was 2.8%.
Recall that the original sentence recognition error rate provided
by the research decoder was 7.4%. This represents a substantial
improvement in accuracy. However, these results assume a hypo-
thetical user who makes perfect use of the provided predictions
and recognition alternatives. Further, this word-at-a-time approach
requires explicit dwell-clicks to select items and this will inevitably
slow the input process.

6 DISCUSSION
Dwell-free eye-typing is in theory faster than dwell-based eye-
typing [14]. However, user adoption requires more than studying
entry and error rates among able-bodied users in a typical text entry
transcription task. Many subtleties play a large role in practical
performance. The computational simulations help illuminate how
some fairly fundamental design parameter choices have deep rami-
fications in a commercial-grade statistical decoder for dwell-free
eye-typing.

The deployment study identified five user adoption barriers for
dwell-free eye-typing: (1) poor integration with external applica-
tions; (2) poor integration of error correction interface; (3) an in-
ability to fluidly combine dwell-based and dwell-free text entry; (4)
lack of support for editing the final text; and (5) accuracy problems
in the face of noisy eye gaze control.

6.1 Design Implications and Research
Opportunities

Having identified barriers to adoption we now distill design impli-
cations based on the interviews and observations with participants,
and informed by the design performance simulations where rele-
vant. Figure 4 summarizes and links these design implications to
IUI research challenges identified in a recent review [45].

6.1.1 Remove Restriction of Gazing at the Intended Key. In the cur-
rent product, users were instructed to dwell-free eye-type by gazing
at each intended key in sequence and that at least a single gaze
point had to register on the user’s intended key. We observed two
issues with this restriction. First, some participants had difficulty
gazing at the intended key but could quickly gaze at a nearby key.
Their performance could likely be improved by instructing them to
merely gaze in the vicinity of their intended key. Second, even par-
ticipants with highly accurate eye control felt the current apparent

restriction induced unnecessary stress, in particular since the con-
sequence of an incorrect recognition result was very cumbersome.
Relaxing the instruction to gazing in the vicinity of a nearby key
should ideally be coupled with a visualization that makes users less
likely to be concerned with gazing at a specific key, such as, for
example, a circular semi-transparent area cursor. While this feature
is supported by our statistical decoder, giving users confidence to
gaze less precisely would require appropriate interface feedback
and user training. Further research on different decoder parameters
and different decoder architectures, such a deep neural network ar-
chitectures, may result in more robust solutions that are less reliant
on precise fixation locations.

6.1.2 Allow Fluid Dwell-Based and Dwell-Free Eye-Typing. Many
participants expressed a desire to switch between dwell-free eye-
typing and traditional dwell-based eye-typing. This is feasible to
implement in the decoder as demonstrated by the computational
simulations with locked letters. This letter locking approach has
been shown to be effective on a smartwatch keyboard [5, 39]. We
recommend this feature be included in a dwell-free keyboard. We
also suggest future work investigate the many user interface design
parameters that arise in such a hybrid design as their consequences
are difficult to anticipate. For example, many participants were
uncomfortable with the opaque and mysterious nature of dwell-
free eye-typing. A hybrid design that seamlessly blends dwell-based
and dwell-free eye-typing needs to be co-designed with users to
ensure the final design is not only theoretically efficient but also
easy to understand and behaves predictably.

6.1.3 Provide Word Predictions. All our participants were expert
users of word predictions. Every single participant engaged with
traditional eye-typing by typing a single letter and then scanning
for a suitable word suggestion. This is logical as a rate-limited
user can benefit substantially from word predictions, assuming the
precision of the word prediction algorithm is high [12]. This familiar
and efficient feature should be included in a dwell-free eye-typing
interface. Multiple word predictions or even sentence predictions
could also be added. However, care must be taken to present them
in a way that is not distracting to the user and careful planning
is required to ensure the screen real-estate permits the display of
a suitable number of predictions. Prior work has examined such
design decisions using computational experiments (e.g. [39]) and
we believe a similar approach could be fruitful for this application.
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Figure 4: A map of the design implications we identify in this work to research challenges identified in a recent review of IUI
research [45].

6.1.4 Provide Alternative Words without Requiring a Mode Switch.
Participants engaging well with dwell-free eye-typing often wanted
to fine-tune the final text and, in the event of an error, correct it.
However, no participant realized there even was a correction inter-
face, and, when shown the correction interface, did not like that
it was on a separate screen. As recognition alternatives are often
the user’s intended words, we suggest displaying them in a highly
visible position on the same screen as the main keyboard inter-
face. This may be difficult to fully accommodate due to limited
screen sizes on current assistive eye-tracking devices. However,
given the considerable user benefit a unified text entry and cor-
rection interface may offer, it may be worth investing in upgraded
hardware with a larger screen and a higher resolution. In addition,
prior research has proposed word confusion network displays for
speech recognition [24], handwriting recognition [20], and for mo-
bile speech recognition interfaces on small displays [40]. We believe
such approaches are promising avenues to explore to avoid a mode
switch between entry and correction.

6.1.5 Allow Easy Fine-Tuning of Punctuation and Capitalization.
One participant wanted to fine-tune punctuation and capitaliza-
tion. Another participant felt dwell-free eye-typing would be more
suitable for conversations rather than text intended to be read. Our
computational experiments demonstrated repeatedly that punc-
tuation was particularly hard to recognize correctly. Our decoder
currently uses an𝑛-gram language model that can see only a limited
window of previous characters. Neural language models (e.g. GPT-
2 [29] and more recent models) are capable of conditioning on a
much larger window of text [7] and might better predict case due
to their encoding of text into continuous features. However, even
with improved language modeling, errors may still occur. These
should be addressed by offering a post-hoc fine-tuning interface
allowing words to be modified after recognition rather than speci-
fying case and punctuation directly in their dwell-free input. Care
must be taken to design such an interface given the limited screen
real-estate.

6.1.6 Support Multiple Recognition Triggers. Participants in gen-
eral felt dwell-free eye-typing appeared magical and unpredictable.

We believe this is primarily due to the lack of agency in a recognition-
based interface. When the decoder works, the system is predictable.
However, when the decoder does not work the system is unpre-
dictable and there is very little the user can do to preempt such an
event. The causes of recognition errors are numerous and only some
relate to the user’s behavior. Factors that are completely outside
a user’s control include, for example, the quality of the language
model and decoder search errors. Further, when recognition errors
occur they can confuse users as the output is often nonsensical. It
may be better in the case of low confidence recognition events to
instruct the user to repeat their input rather than displaying likely
incorrect results.

One idea proposed by several participants was to provide in-
termediate decoding results. While a decoder can do this (since
the decoder can generate hypotheses as input is streamed into the
decoder) it may be inadvisable for three reasons. First, these incom-
plete hypotheses may appear confusing or nonsensical as they are
incomplete and only reflect the best partial result of an ongoing
search process. Second, displaying intermediate hypotheses may
divert a user’s visual attention, affecting their eye gaze precision.
Third, it would be difficult to devise a robust selection mechanism
for accepting an intermediate result that does not risk prematurely
terminating input.

A more robust solution with fewer risks is to introduce flexi-
ble triggering of decoding at natural endpoints, such as when a
user inputs a phrase or sentence delimiter. This may demand a
careful redesign of trigger keys to avoid false activations. We stud-
ied such designs in the computational simulations in this paper
and the results are promising in terms of reducing errors. Prior
work [38] has studied the performance impact of allowing able-
bodied users to modulate the amount of input they provide to a
virtual keyboard decoder and demonstrated that such solutions are
viable, although the highest performance was observed when users
entered entire sentences. In another study with able-bodied users
[53], multiple word input allowed faster typing but the interface
had to be carefully designed to avoid additional cognitive burden.
Future work is required to explore such solutions for dwell-free
eye-typing and investigate their impact on performance in user
studies with participants from the target audience.
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6.1.7 Provide a Tutorial and Performance Indicator. The partici-
pants engaging well with dwell-free eye-typing did not fully under-
stand how they were supposed to use it or how to use additional
features, in particular error correction. In addition, the value of
dwell-free eye-typing in terms of its immediate value proposition
to the participants was unclear. These issues can be mitigated by
introducing a playful tutorial demonstrating the principles of dwell-
free eye-typing and introducing the user to all features. To further
entice and engage users, performance indications such as entry
rate can be shown to the user to make the value proposition clear.
Prior work in the AI in education literature has considered the
design of intelligent text entry tutorials [10]. An early example is
the built-in playful text entry tutorial Giraffe in Palm Pilots [28].
Later, Kristensson and Zhai [18] introduced a text entry tutorial
in the form of a game that used an expanding rehearsal interval
algorithm to improve learning rates. Further work has explored
games for learning sentence-decoding based text entry and gesture
based text entry [3, 37]. We believe techniques from the intelligent
tutoring system community could be adapted to realize effective
and efficient interactive tutorials for dwell-free eye-typing.

6.1.8 Ensure Complete Integration. All participants engaging well
with dwell-free eye-typing raised concerns about the current dwell-
free eye-typing product having poor integration with the rest of the
system. We caution against naïve integration work, such as merely
sending text to an active application window, as it is important that
any integration with a user’s application allow fluent and easy to
understand error correction and text editing of previously written
text.

6.2 Limitations and Future Work
Dwell-free eye-typing is only suitable for literate users and, among
these, probably only suitable in the foreseeable future to users with
precise eye control or eye control that is only mildly perturbed by
noise. Therefore, it cannot be considered a complete eye-tracking
solution and must be complemented with other technologies, such
as traditional eye-typing.

The deployment study draws its conclusions from six partici-
pants sampled from the customer database of Tobii-Dynavox. We
engaged with each participant for several hours as part of an occa-
sional support visit carried out by the company. While we would
argue that such sampling and user study contexts allowed us to
better understand barriers to adoption, we nevertheless acknowl-
edge that the sample is small and cannot be considered completely
representative. We hope further work can help to corroborate the
findings in this paper.

The researcher involved in the study and the interpretation of
the results was also deeply involved in developing the dwell-free
eye-typing product. There is therefore an unavoidable bias in both
the qualitative study itself and the interpretation of the results.
While substantial care has been invested in carrying out the user
study and interpreting the results in an as unbiased manner as
possible, we nevertheless caution the reader that unavoidable bias
is most likely intrinsic in the qualitative results.

For future work we see two fruitful avenues for research. The
first is to carry out further in situ user studies to study refined iter-
ations of a dwell-free eye-typing interface informed by the design

implications in this paper. The second is to investigate technical
improvements in the decoder architecture, such as choice of decod-
ing algorithm, language modeling approach, and the possibility to
adapt and personalize to a user’s behavior and writing style. We
hope the key findings in the deployment study and the identified
design implications can guide such research.

7 CONCLUSIONS
This paper has investigated barriers to adoption of a dwell-free
eye-typing product that realizes a system previously envisioned
in the literature [14]. Rather than having to dwell on each letter,
users can instead quickly glance through all the letters in their
desired sentence. The system was deployed to users reliant on eye-
typing for their everyday communication. We sampled six active
users of a commercial gaze assisted communication product and
identified five adoption barriers: (1) poor integration with external
applications; (2) poor integration of error correction interface; (3)
an inability to fluidly combine dwell-based and dwell-free text
entry; (4) lack of support for editing the final text; and (5) accuracy
problems in the face of noisy eye gaze control. Inspired by the results
of the deployment study we carried out computational simulations
to better understand the potential quantitative effects of different
user interface features. By combining the best performing features
we found dwell-free eye-typing may offer a character error rate
below 3%. This would be accurate enough for many purposes, such
as interpersonal communication. Based on these investigations,
we distilled a set of design implications that can help guide future
improvements to dwell-free eye-typing.

User performance of both dwell-based and dwell-free eye-typing
is highly reliant on the individual. While one could focus on exper-
iments investigating quantitative entry and error rates, both are
highly variable among individuals and avoid many issues that must
be solved for dwell-free eye-typing to be useful in practice. Rather,
we suggest a more fruitful endeavour would be understanding and
tackling adoption barriers facing eye-typing users. We hope our
user study, design performance simulations, and distilled design
implications will help progress dwell-free eye-typing, unlocking
the potential this new interaction method may offer eye gaze com-
municators.
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