
Uncertain Text Entry on Mobile Devices

Daryl Weir1, Henning Pohl2, Simon Rogers1, Keith Vertanen3, Per Ola Kristensson4
1University of Glasgow, UK, 2University of Hannover, Germany,
3Montana Tech, Montana, USA, 4University of St Andrews, UK

darylw@dcs.gla.ac.uk, henning.pohl@hci.uni-hannover.de, simon.rogers@glasgow.ac.uk,
kvertanen@mtech.edu, pok@st-andrews.ac.uk

ABSTRACT
Users often struggle to enter text accurately on touchscreen
keyboards. To address this, we present a flexible decoder for
touchscreen text entry that combines probabilistic touch mod-
els with a language model. We investigate two different touch
models. The first touch model is based on a Gaussian Pro-
cess regression approach and implicitly models the inherent
uncertainty of the touching process. The second touch model
allows users to explicitly control the uncertainty via touch
pressure. Using the first model we show that the character
error rate can be reduced by up to 7% over a baseline method,
and by up to 1.3% over a leading commercial keyboard. Us-
ing the second model we demonstrate that providing users
with control over input certainty reduces the amount of text
users have to correct manually and increases the text entry
rate.

Author Keywords
Mobile text entry; keyboard error correction

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—Input devices and strategies, Interaction styles

INTRODUCTION
Touchscreen keyboard input is inherently uncertain. This
uncertainty stems from a number of sources. When trying
to press a key, users often touch a location offset from their
intended target—this is the well known Fat Finger Prob-
lem [32]. Further, users might be unsure about the spelling of
some words, leading to incorrect input. Finally, touch sensor
readings also introduce a degree of uncertainty.

There is a growing body of research on using probabilistic
techniques to model this uncertainty in order to improve the
performance of touch interactions. For text entry, there are
two primary approaches. The first is offset modelling, which
aims to predict the intended touch target given the recorded
touch location. Weir et al. [37] used a Gaussian Process (GP)
regression approach to predict the distributions over possible
touch locations. Goodman et al. [9], Kristensson and Vertanen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.
CHI 2014, April 26–May 01, 2014, Toronto, ON, Canada.
Copyright 2014 ACM 978-1-4503-2473-1/14/04...$15.00.

Figure 1. We present an autocorrect method for typing on a pressure-
sensitive touchscreen. Given a touch location (xraw,yraw) and a touch
pressure (ω), a touch model assigns probabilities to keys while a lan-
guage model assigns probabilities to possible words. A decoder algo-
rithm combines these to make a prediction on the entered text. Pressure
information can be used to control the text correction behavior.

[17] and Bi and Zhai [2] used information about the location
of on-screen targets to obtain the probability that a given
touch was meant for a given target. The second approach
is language modelling, using statistical properties of text to
obtain the most likely interpretation of a stream of key presses.
For example, Goodman et al. [9] showed that it was possible
to reduce error rates by a factor of 1.67 to 1.87.

We present a flexible decoder that combines state-of-the-art
probabilistic touch models with a long-span language model
(Figure 1). Our decoder searches for the most likely text given
the uncertainty of the tap locations, possible missing key
presses, and possible extra key presses. Using our decoder we
have tested a variety of correction strategies, such as whether
the decoder is free to change previous characters.

We consider two touch models representing different ap-
proaches to modelling and controlling touch uncertainty. The
first is GPType, which uses a GP to model user specific touch
offsets and their variance in different areas of the screen. The
GP is based on training data and hidden from the user. Thus
GPType represents an implicit uncertainty model, mirroring
existing autocorrection techniques in commercial devices.

In our second system, ForceType, we allow users to explicitly
control the level of uncertainity in their input via pressure
information. This gives users control over the relative influ-

ence of the language model (LM) and allows them to handle
situations where typical correction systems might fail. For
example, when typing words not found in the training corpus
of the LMs, mixing languages, or using slang words, text may
be autocorrected to something unintended. Using existing
systems, users have to take action to revert to the entered
text. While users can be casual and allow their phones to
correct their mistakes for most text, they can elevate their
level of control for phrases where they feel the autocorrection
algorithm may go astray.

RELATED WORK

Text Entry Correction Approaches
Several on-screen keyboard correction methods have been
explored in the literature [16]. Goodman et al. [9] were the
first to combine a language model and a touch model to in-
crease accuracy on soft keyboards. They determined the best
key sequence for a touch sequence by maximizing the like-
lihood, significantly reducing error rates. Kristensson and
Zhai [20] presented an alternative approach that used pattern
matching to identify the words that most likely corresponded
to users’ tap sequences. Gunawardana et al. [10] presented
an approach with dynamic key-target resizing which defined
a minimum target size, preventing key targets from shrink-
ing too much. Rudchenko et al. [29], with their Text Text
Revolution game, showed that per-user touch models and
personalized key-target resizing can further improve typing
accuracy. Kristensson and Zhai [19] presented the gesture
keyboard Shark2, which combined a shorthand writing system
with a language model. Goel et al. [8] showed how accelerom-
eter data can be used to correct typing errors resulting from
inaccuracies due to walking.

Offset Modelling
On any touchscreen device, the location a user touches and
the location the user intended to touch are offset. This has
been studied as a perception problem based on how users
target things hidden by their fingers [14]. This is also caused
in part by the softness of the finger causing a large touch
area—the so-called Fat Finger Problem [32].

A body of research exists based on modelling and correct-
ing touch offsets. For example, Henze et al. [11] collected
millions of touches in an Android typing game and modelled
offsets using polynomials to improve text entry accuracy.
Weir et al. [37] demonstrated offset modelling using a GP
regression model, and in particular showed the importance
of user specificity in offset models. Bi and Zhai [1] extend
Fitts’ law to finger touch using a dual Gaussian distribution
approach. Bi and Zhai [2] further extend this to handle tar-
get selection on a touchscreen using their Bayesian touch
criterion, demonstrating a significant increase in accuracy.

Pressure Input
Pressure has been used in interactive systems for a wide range
of applications. Ramos et al. [26]’s pressure widgets, showed
how stylus pressure can be used in selection tasks and how
many pressure levels can be discriminated. Force Gestures by
Heo et al. [12] augmented tapping and dragging operations
with pressure to extend the available gesture set. A more
general investigation of pressure-based interaction was done

by Stewart et al. [34] who looked at how holding a device
influences target acquisition times.

There is some work on combining typing with pressure data.
For keypads, McCallum et al. [23] showed how pressure-
based disambiguation allows faster text entry than multi-
tap. Shi et al. [31] showed that using a fisheye function
for pressure-based selection reduces error rates. Brewster and
Hughes [3] used pressure to allow the selection of letter case
when typing. Clarkson et al. [5] presented a way of mark-
ing messages as urgent when typed more forcefully which
is similar to our approach of giving more weight to more
forceful typing. In One-press control [6], pressure is used to
create a new set of modifier keys. TypeRight [13] is a physical
keyboard that prevents errors by increasing the resistance of
keys for out of vocabulary (OOV) words.

Autonomy Handover
The ForceType system presented in this paper allows users
to influence how much control they want to give to auto-
correction. Flemish et al. [7] referred to this concept as the
H-metaphor and liken it to riding a horse where people can
‘loosen or tighten the reins’ to vary their level of control.
Williamson [38] looked at interactions as a control process,
where the level of uncertainty influences how much control
is exerted and what kind of feedback has to be provided. Un-
certain input for GUIs has been investigated by Schwarz et
al. [30], who tried to enable vague input handling for standard
widgets. Pohl and Murray Smith [25] frame the change of
control as a casual interaction continuum, where users them-
selves choose how much they want to engage, allowing them
to refrain from tight control when close interaction with their
device is frowned upon socially.

THE GPTYPE SYSTEM
GPType is a correction system consisting of three parts: (1)
a LM which assigns probabilities to sequences of text, (2)
a touch model, which assigns probabilities to each key on
a keyboard given a touch location, and (3) a decoder which
combines the LM and touch model probabilities and decodes
what the user was trying to type.

Language Model
We adapted a language model that has previously been used
for a thumb-typing touchscreen keyboard [24]. The Twitter-
based language model was trained based on 778M tweets sent
between 12/2010 and 6/2012. Duplicate tweets, retweets, and
non-English-language tweets were eliminated via a language-
identification module [21] (with a confidence of 95%). Based
on a tweet’s source string we removed all tweets that did
not originate from a mobile device. Tweets were split into
sentences and we only kept sentences where all words existed
in a list of 330K words drawn from Wiktionary, Webster’s
dictionary, the CMU pronouncing dictionary, and GNU aspell.
The final dataset consisted of 94.6 M sentences, 626 M words,
and 2.56 G characters.

The language model was built using the SRILM toolkit us-
ing a vocabulary of A-Z, space, apostrophe, comma, period,
exclamation point and question mark. The character-based
7-gram language model was smoothed using Witten-Bell and

no count cutoffs. The model was then entropy-pruned to re-
duce the memory footprint in anticipation of using the model
on a mobile device. The final model had 225 K n-grams and
a compressed disk size of 2.0 MB.

Touch Model
To generate input probabilities for the decoder, we use GP
regression to model each user’s touch offset function. GPs
are flexible, non-parametric statistical tools commonly used
for regression and classification. Given 2D touch locations
s = (x,y), the GP learns a function which maps to the offsets
(∆x,∆y). The GP is defined in terms of its mean function µ(s),
which we choose to be zero since in the absence of data we
wish to predict no offset, and its covariance function C(sn,sm),
which defines how similar the n-th and m-th outputs should
be given the corresponding inputs. A full treatment of GP
regression and classification is given in [27], and an example
of using a GP for touch offset modelling can be found in [37].

Following Weir et al.[37], we choose a linear combination of
a linear and a Gaussian covariance function:

C(sn,sm) = asT
n sm +(1−a)exp

{
−γ||sn− sm||22

}
,

where a controls the relative influence of the terms, and γ is
the scale parameter of the Gaussian function.

The advantage of the GP over a parametric method such as
a polynomial (used in e.g. [11]) is that the prediction is a
distribution over possible offset values. For text entry, we
use this to obtain probabilities over the different keys on the
keyboard for a given touch. The probability of a given key
is found by integrating the density function of the predictive
Gaussian over the rectangular area of the key. In practice this
is not possible analytically, so we approximate the probability
by sampling from the Gaussian, counting which keys the
samples fall into, and then normalising these counts to obtain
probabilities.

The sizes of the predictive Gaussians, and consequently the
probabilities produced by the model, are learned from train-
ing data. Thus, in areas of the screen where the offsets are
more variable, the Gaussians are larger and the probabilities
more diffuse. This gives the language model more latitude
to correct inputs in these areas. The GP models the uncer-
tainty in the touch interaction and uses information about
that uncertainty to make predictions. This is an advantage
over other probabilistic approaches, such as that proposed
by Bi and Zhai [2], which model the touch uncertainty with
fixed parameters for all users. The tradeoff is that users must
provide calibration touches before using the system.

Decoder
We created a decoder which searches for the most probable
character sequence given a sequence of taps. Each “tap” is in
reality a probability distribution over every keyboard charac-
ter. These tap distributions were set according to the GP tap
model as well as the ForceType model.

As we will describe shortly, we explored four different cor-
rection strategies in our interface. Each strategy involved
changing how much of the tap sequence the decoder was
allowed to change. To facilitate this, the decoder allows some

taps to be marked as fixed. Fixed taps served as language
model context, but were not eligible for change during the
decoder’s search.

The decoder searches in the space of all possible character
sequences for the non-fixed taps in an observed sequence.
During this search, a tap would most likely generate the actual
key hit. But the decoder also allows substitution with all other
possible keys according to the provided tap distribution.

Our decoder allows an observed tap to be deleted without
generating a character. Similarly, it explores inserting all
possible characters without consuming an observation. Both
insertion and deletion hypotheses incur a configurable penalty.

During its search, the decoder makes use of a character lan-
guage model. As each output character is generated, we com-
bine the tap probability with the probability of the character
given the language model by taking a weighted product. The
relative contribution of the tap distribution and the language
model is controlled by a configurable scale factor.

The search over all possible character sequences is exponen-
tial in the length of the sequence. Pruning is thus critical to
ensure real-time performance. During its search, any hypoth-
esis that becomes less probable then the current best answer
is pruned. Additionally, we employed beam width pruning.
In beam width pruning, the decoder tracks the best hypothesis
found thus far for each position in the tap sequence. Hy-
potheses that are too improbable (i.e. outside the beam width)
compared to the best one at a particular position are pruned.
By varying the beam width, we can control the speed accu-
racy tradeoff during recognition. The free parameters of the
decoder were optimized with respect to the data we used to
learn the GP probabilities.

STUDY 1: GP AND CORRECTION STRATEGIES
In order to build our text correction system, we required
training data. This data came in two parts: (1) training points
for the GP offset model, and (2) typing data to which we could
apply various correction strategies to identify the optimal
technique. This section details the procedure conducted to
collect this data and the details of the resulting model.

Figure 2. A screenshot of our logging application. The target phrase,
the currently entered text and our simplified keyboard are shown.

S3 S4 S2 S1 Baseline
0%

4%

8%

12%

16%
C

ha
ra

ct
er

E
rr

or
R

at
e

(a) Sitting

S3 S4 S2 S1 Baseline
0%

4%

8%

12%

16%

C
ha

ra
ct

er
E

rr
or

R
at

e

(b) Standing

S3 S4 S2 S1 Baseline
0%

4%

8%

12%

16%

C
ha

ra
ct

er
E

rr
or

R
at

e

(c) Walking
Figure 3. Character error rates after applying our four different correction strategies to the typing data gathered in our model building study,

separated by mobility condition (Study 1). Plots show mean and standard error across all participants. The baseline method represents the literal
keys touched.

We built our models based on data collected from 10 partici-
pants (4 female) who volunteered for three 45 minute sessions.
Participants ranged in age from 19–31 (mean = 25.4, sd =
4.25). All participants were smartphone owners, and rated
themselves as intermediate to expert users of touchscreen
devices. At the end of the data collection period, participants
were paid £10 for their time.

To collect training data for the GP, we built a custom keyboard
running on a Samsung Galaxy SII smartphone, with Android
version 4.0. The keyboard had a simplified layout consisting
only of the alphabetic keys, space bar, period and an enter key.
Participants were asked to press a sequence of keys until 10
presses were logged for each key. When a key was pressed,
the keyboard logged the time and touch location, as well
as the location of the center of the requested key. Touches
which were more than 3 key widths from the intended key
were filtered out, as these were deemed likely to be mistakes.
Participants repeated this process in three mobility conditions:
sitting, standing, and walking. We chose not to use a pace
setter for the walking condition, instead asking participants to
move at whatever speed they were comfortable walking and
typing. Participants walked in a set path, and their laps were
timed so that walking speed could be determined. We trained
our GPs offline using MATLAB. The covariance function
parameters were optimised on a user specific basis using 10-
fold cross validation to find the model which minimised the
RMS error between the offset touch locations and the centers
of the target keys. The implicit assumption that users target
the key center is without loss of generality—if in truth they
target some other feature, the offsets would simply be shifted.

Each participant also provided typing data. We used phrases
from the Enron Mobile Email dataset [36] as stimuli. This
phrase set consists of phrases drawn from genuine mobile
emails and has been shown to result in similar text entry
performance as the MacKenzie and Soukoreff [22] phrase
set [18]. We filtered out any phrases containing characters
not on our keyboard, and then removed sentences with fewer
than 4 or more than 10 words. This left a set of 427 phrases.
Participants were shown a random subset of these and asked
to type them as quickly and accurately as possible using our
custom keyboard. As there was no backspace key, participants
had to leave any mistakes uncorrected. This was done so
that we could evaluate the quality of our model’s corrections
on the text as entered. During each of the three sessions,

participants typed for 10 minutes in each mobility condition.
The order of mobility conditions was counterbalanced across
both participant and session. Participants were instructed to
hold the phone in two hands and type with their thumbs. The
stream of touches for each typing session was passed through
the best GP for that participant to obtain offset touch locations
and key press probabilities. These probabilities were then
passed through the decoder to obtain the corrected sentences.
We evaluated four correction strategies:

S1 Single-Key Correction—for each key press, we input the
letter with the highest combined LM/GP probability, hold-
ing all previously entered characters fixed.

S2 Modifiable Context Correction—as S1, except that the
decoder is also free to change previously entered letters.

S3 Word Correction—when the user types a word delimiter
(space or period), the system uses the LM and GP to iden-
tify the most likely word, holding previously entered words
as fixed context.

S4 Single-Key + Word Correction—combination of S1 & S3.

We measured performance in terms of the character error rate
(CER) after correction, averaged across all phrases and all
users for a given mobility condition. CER is the number of
characters that need to be inserted, substituted, or deleted in
order to transform the corrected text into the reference text,
divided by the number of characters in the reference text. For
each correction strategy, we also tested a range of values for
the cost and maximum number of insertions and deletions, the
beam width of the decoder’s search, and the relative scaling
of the probabilities from the LM and GP.

Our results are summarised in Figure 3. These plots show
the mean CER achieved for each correction strategy, along
with the baseline error between the characters as typed and
the stimuli.

In general, we found that S3 and S4 were the optimal correc-
tion strategies — there was no significant difference between
them for any mobility. S2 was slightly worse than either of
these. In theory S2 represents the most thorough search, since
at each new tap the system is allowed to change all previous
letters. In practice, multiple such corrections can introduce
insertion or deletion errors which accumulate over time, lead-
ing to the increased error rate seen here. S1 is the worst of the
correction schemes, since it is only able to fix cases where
the wrong key was hit, and cannot correct transposition errors

GPType SwiftKey GP Only Baseline
0%

4%

8%

12%

16%
C

ha
ra

ct
er

E
rr

or
R

at
e

(a) Sitting

GPType SwiftKey GP Only Baseline
0%

4%

8%

12%

16%

C
ha

ra
ct

er
E

rr
or

R
at

e

(b) Standing

GPType SwiftKey GP Only Baseline
0%

4%

8%

12%

16%

C
ha

ra
ct

er
E

rr
or

R
at

e

(c) Walking
Figure 4. Character error rates for the two keyboards we evaluated, separated by mobility condition (Study 2). Plots show mean and standard error

across all participants. The baseline method represents the literal keys touched, while GP Only shows the keys hit after the mean GP offset is applied.

such as typing ‘teh’ in place of ‘the’.

The observed error rates were not significantly different be-
tween the sitting and standing mobility conditions, but the
error rates for the walking condition were significantly higher
(paired t-test, p < 0.05). The lowest error rates obtained us-
ing the optimal correction strategies were 5.02% for sitting,
5.47% for standing, and 6.5% for walking.

STUDY 2: COMPARISON WITH SWIFTKEY
We evaluated our best correction system in a study. The goal
of this study was to determine whether the benefits shown in
our offline simulations were reflected in a live typing task. We
also wanted to assess how our system compared to an existing
commercial soft keyboard. For this we chose SwiftKey1, a
popular Android keyboard which also uses language mod-
elling to perform intelligent correction.

We ported the GP, LM and decoder to Android and adapted
our custom keyboard from the model building study. We used
S3 as our correction style, since it was as good at correcting
as S4 and required fewer LM searches. We used 5 examples
of a user’s touch per key to train the GP, rather than the 10
used in model building, in order to prevent input from slowing
down due to large matrix operations.

Participants
We recruited a further 10 participants (3 female) to take part
in this evaluation. Ages ranged from 18–28 (mean = 22.4,
sd = 4.22). 8 participants were smartphone owners and con-
sidered themselves expert users. The other 2 did not own
smartphones and had little experience using touch screen de-
vices. No participant in this study took part in the previous
study. Participants were paid £10 for their time.

Apparatus
Participants typed using our custom logging application,
again running on a Samsung Galaxy SII. This smartphone
has a 4.3 inch screen with a 480× 800 pixel resolution. A
screenshot is shown in Figure 2. The stimulus phrase appears
at the top of the screen, and the text entered by the participant
is shown below. The time remaining in the current typing
task is shown in the upper right. Visually, this application
was identical to the one used in the model building study. The
backspace key in the logging app was disabled, as we wanted
1http://www.swiftkey.net

to evaluate the quality of the corrections made by our system
without participants manually backspacing to correct errors.

As mentioned above, we also collected typing data using the
SwiftKey keyboard. The keys on our custom keyboard have
the same size and layout as those in SwiftKey, so the two
logging interfaces were very similar. As SwiftKey is a third
party product, it was not possible to disable the backspace key
and so participants were instructed not to use it and accept
any corrections from the keyboard.

Procedure
The procedure for the study consisted of three sessions. In the
first session, participants provided calibration data for the GP
in each of the three mobility conditions. This was collected
in the same way as in the model building study. Afterwards,
participants typed for five minutes, while seated, on each
of the two study keyboards to familiarise themselves with
the layouts. As in Study 1, participants typed phrases from
the Enron Mobile Email set [36]. In each of the other two
sessions, participants performed 10 minutes of typing in each
mobility condition. They used GPType in one session, and
SwiftKey in the other. All tasks were carried out in a meeting
room, with a clear path marked for walking.

Design
Our study was a within-subjects 2x3 factorial design with
factors: Keyboard (levels: GPType, SwiftKey) and Mobility
(levels: Sitting, Standing, Walking). The presentation order
of the keyboards was counterbalanced across participants, and
the order of mobility conditions was partially counterbalanced
across participants and between sessions. A full counterbal-
ancing was impossible with 3 levels and 20 sessions.

Results
We measure performance of the corrections produced by each
keyboard in terms of CER between the corrected text and
the stimulus phrase. Our results are summarised in Figure 4,
which shows the mean and standard error across all partici-
pants, separated by mobility condition. The baseline is the
CER between the keys hit by the participant’s touches and
the stimulus phrase. Also shown is a GP Only condition, in
which we apply the mean offset from the GP to the user’s
touch and see which key was hit by the resulting touch. The
GP Only condition does not use the decoder or LM.

Both keyboards offer a significant improvement over the base-
line in all mobility conditions (paired t-test, p < 0.05). The

http://www.swiftkey.net

CER reduction over the baseline for GPType was 4.9% for sit-
ting, 5% for standing, and 7.6% for walking. Further, GPType
offers a small but significant improvement over SwiftKey in
the standing and walking mobility conditions (approximately
1% reduced CER for the standing condition and 1.3% for
walking). No significant difference between the keyboards
was observed in the sitting condition. This is likely an effect
of the participants’ touch offsets becoming more pronounced
when standing or moving. Interestingly, the standing condi-
tion had the lowest CER for both baseline and the evaluated
keyboards. It is unclear why this should be the case.

Also of interest is the fact that the GP Only condition is
significantly better than the baseline. This indicates that both
the offset modelling and the decoding play a role in producing
the observed reduction in error rate. By computing the mean
touch offset, many substitution errors can be corrected. The
decoder can then decrease the error rate further by fixing
transposition errors and performing insertions or deletions.

We also measured participants’ text entry rates for both key-
boards. However, we saw no significant difference between
GPType and SwiftKey. This is perhaps to be expected, given
that the physical layout of the keyboards was the same and
that backspace was disabled, so the observed entry rates do
not subsume manual error correction.

THE AUTOCORRECT TRAP
So far we have explored a novel approach of error correction
for touchscreen keyboards. Current touchscreen keyboards
use a wide range of other autocorrection techniques (e.g.,
adaptive but clamped target resizing [10]). These techniques,
as well as our GPType method presented here, implicitly
model uncertainty: the user has little influence on the way
autocorrection works. In any such system, users might be able
to reject a proposed correction, delete a character and retype
with autocorrection switched off, or select the corrected word
and pick from the originally typed version, or other sugges-
tions. While this theoretically allows users to control text
correction according to their needs, there are still widespread
frustrations and situations where text prediction falls short.
When typing unknown words, using regional dialects, or mix-
ing languages, autocorrection is often not flexible enough.

We thus propose giving users control over how their phones
correct text. Empowering users to vary the level of error cor-
rection per word allows users to fall back to automatic error
correction for phrases they deem correctable while being able
to tighten the reins during phrases they feel their phones can-
not handle. This assumes that users have a sense of whether
a phrase is hard for the text prediction on their phone or not.
To get an idea of how the capabilities of auto-correction are
viewed by users, we conducted a study.

We designed a questionnaire listing 20 phrases of varying
levels of difficulty—some consisting only of common English
words and others with proper nouns, slang, and/or words or
phrases borrowed from other languages (e.g., summa cum
laude). Participants were recruited using mailing lists and
social media. For each phrase, participants were asked to rate
on a 5-point Likert scale whether they thought autocorrect
would change it or not when entered on a smartphone.

We received 28 responses (8 female, ages 17–44, mean =
29.0, sd = 7.5) to the questionnaire. Asked to rate their
English language skills, 86% of participants rated themselves
as functionally native speakers. The rest of the participants
still rated themselves at a near native level.

To establish a ground truth on whether our phrases would
be autocorrected or not, we entered them into three
smartphones—an iPhone 5 running iOS 6.1, an LG E700
running Windows Phone 7.5, and a Samsung Galaxy S3 Mini
using the SwiftKey keyboard on Android 4.1. We noted for
each phone which phrases were autocorrected. In cases of dis-
agreement, where some phones corrected and others did not,
we used majority voting to produce a singe binary value for
each phrase. Next, we split the user ratings for corrected and
uncorrected phrases and produced histograms showing the
counts for each rating. By normalising these histograms we
obtain discrete probability distributions over the ratings for
the two groups of phrases. Our results are shown in Figure 5.
For phrases which would actually be autocorrected, the most
probable rating is 1 (certain correction) and the least probable
is 5 (no correction). The monotonic decrease across the other
ratings shows a clear trend, indicating our respondents had a
good sense of phrases that would be autocorrected.

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

non-autocorrected

1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5
autocorrected

Rating (1 = will correct, 5 = will not correct)
Figure 5. For a set of 20 phrases, we asked 28 people whether they

thought their phone’s autocorrect would change it when entered, or
leave it unchanged. Participants gave a rating between 1 (will definitely
be changed) to 5 (will definitely not be changed). We classified each
phrase by testing it for autocorrection on several different phones. This
figure shows the probability of each point on the rating scale for both
classes (changed and unchanged).

For phrases that were not corrected, the trend is less pro-
nounced. The most likely rating is for no correction and there
is a remarkably high probability that users rate these uncor-
rectable sentences as certain or near certain corrections. In
essence, users overestimate how likely autocorrect systems
are to take action. This is not necessarily an issue—if a user
takes action to prevent autocorrection when none would have
occurred, there is no difference to their final input. These
results motivate the need for a system with finer control over
automatic error correction behaviour. The distributions over
ratings are significantly different (Wilcoxon test, p� 0.01)
for the two groups of phrases. This suggests that users have
a functional mental model of the way autocorrect operates
and would be able to identify situations where preventing
autocorrection is desirable.

Figure 6. The touch model used by our correction system ForceType.
For each key K, we evaluate the likelihood of its centre KC under a Gaus-
sian on the touch point µT . The standard deviation σT is controlled by
pressure. Higher pressure causes a narrower distribution.

FORCETYPE: PRESSURE AS CERTAINTY
Given that users already have a mental model of which words
are likely to be autocorrected, we desire an input modality
which enables them to express certainty about words they
do not want corrected. In essence, we wish to allow users
to negotiate control between themselves and the language
model. For normal typing, the autocorrect functions as it
does on current phones, but when the user suspects the word
they are entering is unknown to the phone’s dictionary they
can smoothly limit the autocorrect behaviour. We choose
pressure as the factor to control this negotiation. When the
user wishes to indicate certainty, they simply press harder on
the keys. Srinivasan and Chen [33] have shown pressure to
be controllable by users and the idea of pressing hard for a
different input behaviour is simple to grasp.

Other research has considered negotiated uncertainty through
user input. Rogers et al. [28] use the height of the finger
above the screen as a proxy for uncertainty when browsing
a map. However, although ‘hover’ input of this form is now
being introduced on commercial phones, such as the Samsung
Galaxy S4, it is not an appropriate choice for a typing appli-
cation. Subramanian et al. [35] showed that users display
unintentional drift when varying hover height, so controlling
uncertainty via this modality may be suboptimal—hence our
choice of the pressure modality.

Correction Model
We use the same language model and decoding algorithm as
for GPType, but rather than generating key press probabilities
from a GP we use a pressure dependent touch model. The
likelihood of a key given a touch is computed as a Gaus-
sian with a standard deviation that changes dependent on the
pressure. In particular, we take the standard deviation as:
σT =C/ωT , where C is a constant and ωT is the pressure for
touch T . Thus for high pressure touches the variance is small
and the probability mass is concentrated in the pressed key,
whereas for lower pressure touches the probability mass is
spread over the keyboard, allowing correction to take place.
The touch model is illustrated in Figure 6.

The constant C needs to be calibrated appropriately. We chose
a value such that the distribution for a ‘typical’ touch had a
standard deviation equal to half a key width. To determine
what defined ‘typical’, we asked 10 participants to repeatedly
write the quick brown fox jumps over the lazy dog, an English
pangram, on our input device, a pressure sensitive touch pad
called the ForcePad (more information on this hardware is
given in the next section). This was done without presenting
any feedback about what was typed, and in the absence of

any correction scheme. This provided us with pressure infor-
mation for typing with every key on the keyboard. From a
histogram of the logged pressure information, it was the clear
the data were not normally distributed and had high positive
skew. We chose to fit a gamma distribution to the data. Next,
from the 2333 collected datapoints we removed 144 outliers
(>2 sd away from the mean — these were primarily points
where the hardware reached its upper sensing limit). We then
refitted a gamma distribution to the remaining data. The mean
of this distribution was 168.28g/cm2 (sd = 106.20g/cm2).
We then chose C such that the Gaussian distribution for a
touch with this mean pressure had a standard deviation equal
to half a key width.

STUDY 3: FORCETYPE EVALUATION
We conducted a user study to determine the effects of pressure-
based scaling of text correction. We hypothesize that:

H1 Pressure-adaptive error correction requires fewer word
corrections by the user than constant-scale text correction.

H2 Users are faster when typing words unknown to the error
correction algorithm when utilising pressure adaptation.

To test these hypotheses, we had participants type a series of
phrases in two conditions: with and without pressure adap-
tation. For the latter, we use the same correction model but
rather than adapting the variance of the touch Gaussian based
on pressure, we used a fixed value, chosen such that the stan-
dard deviation was equal to one key width. This corresponds
to the standard deviation in the pressure sensitive model when
the touch has mean pressure and approximates the behaviour
of autocorrect on modern smartphones.

We used a between-subjects design for the study, so that each
participant used only one correction model. This decision
was made due to the difficulty of having a participant learn
the pressure sensitive model and then asking them to “type
normally” for the other condition. The conditions could thus
not be properly counterbalanced in a within-subjects design.

In order to assess the impact of using the model on the text
entry speed for the pressure group, the phrase set used needs
to contain both correctable phrases, containing only words
known to the correction model, and uncorrectable phrases,
containing at least one word unknown to the model. The
former should not require pressure typing invocations if the
user has a good understanding of the language model behavior,
while the latter set will require one or more invocations.

Participants
We recruited 16 participants (5 female, age 21–39, mean =
25.69, sd = 4.48), where all but three were smartphone owners.
On average, participants had over 3 years of smartphone
experience. On a 1–5 scale (1 = beginner, 5 = functionally
native), participants rated their English language skills at 3.06.
Each participant was randomly assigned to one of the two
conditions—text entry with pressure-adaptive autocorrect and
text entry without. After the experiment, participants were
given a small non-monetary gratuity.

Apparatus
For pressure sensing and finger tracking we use a Synap-
tics ForcePad sensor. The device weights 526g and mea-

sures 14.2×12.2×1.1cm. The touch-sensitive area cov-
ers 10.9×6.9cm on the device’s surface. The sensor’s di-
agonal thus is 12.9cm—within roughly 6% of a Samsung
Galaxy S III’s 12.19cm. Overall, the Forcepad is slightly
larger but considerably heavier (an S III only weighs 133g)
than current mobile devices. However, it does provide a
comparable experience when holding the device in landscape
mode and typing. Thus, we feel confident the Forcepad is
a valid placeholder device for evaluating how future mobile
devices incorporating pressure sensing touch could be used.

The ForcePad provides capacitive tracking with pressure in-
formation for up to 5 fingers. Force readings are provided
with 6 bit resolution at 67 Hz. We take the maximum value
in the last 10 frames as the pressure value for a touch. The
force sensitivity of the ForcePad made us choose this device
instead of for example approaches using accelerometers to
infer typing pressure [15]. Such approaches are typically lim-
ited or inaccurate, and in the first instance we wanted accurate
values to assess how users controlled the system. However,
we consider an exploration of using these techniques to bring
ForceType to modern smartphones as an important avenue
for future work.

Figure 7. Modified Synaptics ForcePad used in the ForceType system.

The ForcePad is an input-only device and cannot display
visual feedback or instructions directly on its surface. Using
an external monitor for feedback, however, would not allow
us to evaluate normal typing behaviour. We thus modified
the ForcePad by attaching a 132×32px LCD to the device
on which we can display three lines of text in a medium-
sized font. The LCD was glued to the top of the ForcePad
increasing the overall weight to 651g without impeding hands
holding the device. The modified device is shown in Figure 7.
An Arduino is used for control and allows the connected PC
to set display content via the serial port. This combination
of ForcePad and LCD enables us to simulate future mobile
devices with pressure-sensitive touch. One limitation of this
hardware is there is no visual feedback on corrections before
they happen—this is another reason that exploring pressure
proxies on current smartphones is a focus for future work.

To simulate an onscreen keyboard, we glued a keyboard over-
lay on the ForcePad. We used a modified version of the iOS
landscape keyboard with all buttons triggering mode switches
removed (so as not to confuse participants). The glued-on key-
board does not introduce new haptic cues and thus provides
an experience comparable to current smartphone keyboards.

Procedure
We used a subset of the English NUS SMS Corpus (version
2012.04.30) as phrase set [4]. This dataset contains 41537
text messages, sent primarily by users in Singapore, India, and
the USA. Text messages often contain slang and shorthand,
making them a good example of the a text where autocorrect
fails. However, not all messages are equally appropriate for
our evaluation and we removed all messages that:

• are shorter than 15 or longer than 50 characters
• contain any character not in the set given by the ISO basic

latin alphabet plus the space and period characters
• are shorter than three words
• contain unknown one-letter words

This filtering leaves us with set of 5733 phrases. Our
main concern is our requirement for unknown words in the
messages—words that can not be found in a standard dictio-
nary known to a language model. To determine such unknown
words, we make use of the built-in Android en-us dictionary.
We now split our phrase set into two parts:

correctable phrases Phrases that only contain words found
in the dictionary (n = 1272).

uncorrectable phrases Phrases that contain at least one
word not found in the dictionary (n = 4461).

For every participant, 20 correctable and 20 uncorrectable
phrases were picked at random. While phrases were chosen
randomly, a post-hoc analysis showed that there was no sig-
nificant difference across users in the number of OOV words
per sentence (p > 0.4). Participants were not provided with
an indication whether a phrase was correctable or not.

At the beginning of the study, we gave participants the chance
to familiarise themselves with our prototype. Participants
then had to complete 40 trials. In each trial, they were shown
the complete phrase on a screen in front of them and then had
to copy that phrase. During text input, the phrase (clipped to
the display size) was shown alongside the response text on the
device. We asked participants to copy the phrases accurately—
if they noticed a mistake, whether from a language model
correction or their own typing, they were instructed to correct
it. After using backspace to delete part of a word, autocorrect
was disabled until the next word. This is equivalent to the
behaviour on phones and prevents infinite correction loops.
Participants had to submit each phrase with the return key.

Results
One participant was excluded from the analysis, as the touch
offsets were so large the touches rarely hit the correct key.

Errors
As our performance measure, we use Active Correction Rate
(ACR), defined as the proportion of words which the user has
to actively correct by backspacing and retyping. This is a
similar approach to Hoffman et al. [13], where they looked at
the number of times backspace needed to be pressed. If H1 is
accepted, we should see a decrease in ACR since users can
use pressure to prevent autocorrection of non-standard words.
We chose this metric over CER, since in this study users were
able to manually change unwanted corrections. In GPType,
corrections made by the system could not be changed, since

fixed σ force dependent σ
0%

25%
A

ct
iv

e
co

rr
ec

tio
n

ra
te

Figure 8. ForceType requires significantly fewer active corrections
from users when entering text. Required corrections dropped by ≈ 10
percentage points. Errors bars are 1 sd.

fixed σ force dependent σ
0

10

20

W
or

ds
pe

rm
in

ut
e

Figure 9. ForceType enabled users to enter phrases > 20% faster. A
significant increase over the baseline. Errors bars are 1 sd.

we evaluated the quality of the corrections, not the ability of
users to control the system. Our choice is supported by the
results—the mean CERs for the two study groups were not
significantly different (∼ 3% in each case).

Figure 8 shows the ACR. Using pressure adaptation, the av-
erage user had an ACR of 10.86%, compared to a value
of 19.48% for users without pressure adaptation. This is a
significant decrease compared to the baseline condition (inde-
pendent two-sample t-test: t12 =−3.48, p < 0.005). We can
thus reject the null hypothesis and accept H1.

The ACR values for both groups are quite high. Since the
phrases are from an SMS corpus, many of the words are not
found in common English. Unfamiliarity with the form factor
of our apparatus may also have increased ACR.

Entry Rate
Entry rate was measured using words per minute (WPM),
with a word being defined as five consecutive characters, in-
cluding spaces. With pressure adaptation active, users typed
19.23 WPM, while without they only typed 15.42 WPM (Fig-
ure 9). This is a significant increase in typing speed (inde-
pendent two-sample t-test: t12 = 3.5002, p < 0.005). We can
reject the null hypothesis and also accept H2.

We also looked at the impact of uncorrectable phrases on typ-
ing speed. A small drop in speed could be expected, as users
have to invest more mental effort in processing those phrases.
We saw WPM go down by 3.97 (ForceType) and 2.61 (base-
line). Both changes are significant (p < 0.05), while the
difference between the two changes is not (p > 0.13). Thus,
ForceType and the control are both equally affected by un-
correctable phrases, resulting in a small performance drop.
Overall, ForceType resulted in a faster text entry rate.

DISCUSSION
The goal of our work was to show the advantages of combin-
ing a probabilistic touch model with a language model and
decoding algorithm to increase text entry accuracy. With GP-
Type, we used a touch offset model to correct for systematic
errors in a user’s touches and then compute probabilities over
keys. This successfully reduced character error rates in a real
typing task to a level comparable with a leading commercial
product. Indeed, when users were standing or walking our
system was slightly better than the commercial keyboard.

Our second system, ForceType, tackled cases where tradi-
tional autocorrect systems failed. By allowing users to convey
certainty in their input using pressure, autocorrect can be dy-
namically turned off to allow entry of words not in standard
word lists, such as acronyms or words from local dialects.
ForceType was successful in increasing typing speed and
reducing the number of cases where users had to manually
correct their entered text.

These two systems represent different approaches to the un-
certainty inherent in text entry. In GPType, we model this
uncertainty in a manner that is hidden from users, allowing
the system to account for and correct many commonplace
errors. In ForceType, the uncertainty is explicitly controlled
by the user, allowing finer control over the system when the
user can anticipate undesired autocorrection behaviour.

It is likely that neither of these approaches is strictly better
than the other. In future work, it would be interesting to
combine offset modelling with explicit pressure control and
see if input accuracy can be further increased.

CONCLUSIONS
Text entry is a ubiquitous activity on modern mobile devices,
but continues to present challenges. The process is naturally
very uncertain, both because of physical effects (e.g. the Fat
Finger Problem) and due to uncertainty of intent—existing
correction systems often assume users are trying to type words
known to a dictionary, but this is certainly not always the case.
In this paper we have presented two systems that improve the
text entry experience by combining a state-of-the-art decoder
and LM with a model capturing individual users’ physical
uncertainty (GPType) and an input system that allows users
to explicitly control uncertainty (ForceType).

Evaluating GPType, we showed competitive reductions in
character error rate for real typing tasks, without reducing
the text entry rate. GPType reduced the character error rate
by 4.9% over the baseline for sitting, 5% for standing, and
7.6% for walking users. Further, GPType obtained an average
1% decrease in CER over SwiftKey, a leading commercial
keyboard, for standing and a 1.3% decrease for walking users.

Evaluating ForceType, we showed that users could success-
fully prevent autocorrection of words they did not want to
be changed by varying their input pressure as they typed,
resulting in faster overall text entry rates.

ACKNOWLEDGMENTS
This research was supported by Scottish Informatics and Com-
puter Science Alliance (SICSA).

REFERENCES
1. Bi, X., Li, Y., and Zhai, S. FFitts Law: Modeling Finger

Touch with Fitts’ Law. Proc. CHI ’13. 1363–1372.
2. Bi, X. and Zhai, S. Bayesian Touch - A Statistical

Criterion of Target Selection with Finger Touch. Proc.
UIST ’13. 51–60.

3. Brewster, S.A. and Hughes, M. Pressure-Based Text Entry
for Mobile Devices. Proc. MobileHCI ’09. 9:1–9:4.

4. Chen, T. and Kan, M.Y. Creating a Live, Public Short
Message Service Corpus: the NUS SMS Corpus.
Language Resources and Evaluation, 2012:1–37.

5. Clarkson, E.C., Patel, S.N., Pierce, J.S., and Abowd, G.D.
Exploring Continuous Pressure Input for Mobile Phones.
Tech. Rep. GIT-GVU-06-20, Georgia Tech, 2006.

6. de Jong, S., Kirkali, D., Schraffenberger, H., Jillissen, J.,
de Rooij, A., and Terpstra, A. One-Press Control: A
Tactile Input Method for Pressure-Sensitive Computer
Keyboards. Proc. CHI EA ’10. 4261–4266.

7. Flemish, F.O., Adams, C.A., Conway, S.R., Goodrich,
K.H., Palmer, M.T., and Schutte, P.C. The H-Metaphor as
a Guideline for Vehicle Automation and Interaction. Tech.
Rep. TM-2003-212672, NASA, 2003.

8. Goel, M., Findlater, L., and Wobbrock, J. WalkType:
Using Accelerometer Data to Accomodate Situational
Impairments in Mobile Touch Screen Text Entry. Proc.
CHI ’12. 2687–2696.

9. Goodman, J., Venolia, G., Steury, K., and Parker, C.
Language Modeling for Soft Keyboards. Proc. AAAI 2002.
419–424.

10. Gunawardana, A., Paek, T., and Meek, C. Usability
Guided Key-Target Resizing for Soft Keyboards. Proc. IUI

’10. 111–118.
11. Henze, N., Rukzio, E., and Boll, S. Observational and

Experimental Investigation of Typing Behaviour Using
Virtual Keyboards for Mobile Devices. Proc. CHI ’12.
2659–2668.

12. Heo, S. and Lee, G. Force Gestures: Augmenting Touch
Screen Gestures with Normal and Tangential Forces. Proc.
UIST ’11. 621–626.

13. Hoffmann, A., Spelmezan, D., and Borchers, J. TypeRight:
A Keyboard with Tactile Error Prevention. Proc. CHI ’09.
2265–2268.

14. Holz, C. and Baudisch, P. The Generalized Perceived
Input Point Model and How to Double Touch Accuracy by
Extracting Fingerprints. Proc. CHI ’10. 581–590.

15. Iwasaki, K., Miyaki, T., and Rekimoto, J. Expressive
Typing: A New Way to Sense Typing Pressure and Its
Applications. Proc. CHI EA ’09. 4369–4374.

16. Kristensson, P.O. Five Challenges for Intelligent Text
Entry Methods. AI Magazine, 30(4), 2009:85–94.

17. Kristensson, P.O. and Vertanen, K. Asynchronous
Multimodal Text Entry using Speech and Gesture
Keyboards. Proc. Interspeech 2011. 581–584.

18. Kristensson, P.O. and Vertanen, K. Performance
Comparisons of Phrase Sets and Presentation Styles for
Text Entry Evaluations. Proc. IUI ’12. 29–32.

19. Kristensson, P.O. and Zhai, S. SHARK2: A Large
Vocabulary Shorthand Writing System for Pen-Based
Computers. Proc. UIST ’04. 43–52.

20. Kristensson, P.O. and Zhai, S. Relaxing Stylus Typing
Precision by Geometric Pattern Matching. Proc. IUI ’05.
151–158.

21. Lui, M. and Baldwin, T. langid.py: An Off-the-shelf
Language Identification Tool. Proceedings of the ACL
2012 System Demonstrations. 25–30.

22. MacKenzie, I.S. and Soukoreff, R.W. Phrase Sets for
Evaluating Text Entry Techniques. Proc. CHI EA ’03.
754–755.

23. McCallum, D.C., Mak, E., Irani, P., and Subramanian, S.
PressureText: Pressure Input for Mobile Phone Text Entry.
Proc. CHI EA ’09. 4519–4524.

24. Oulasvirta, A., Reichel, A., Li, W., Zhang, Y., Bachynskzi,
M., Vertanen, K., and Kristensson, P.O. Improving
Two-Thumb Text Entry on Touchscreen Devices. Proc.
CHI ’13. 2765–2774.

25. Pohl, H. and Murray-Smith, R. Focused and Casual
Interactions: Allowing Users to Vary Their Level of
Engagement. Proc. CHI’13. 2223–2232.

26. Ramos, G., Boulos, M., and Balakrishnan, R. Pressure
Widgets. Proc. CHI ’04. 487–494.

27. Rasmussen, C.E. and Williams, C.K.I. Gaussian Processes
for Machine Learning. The MIT Press, 2005.

28. Rogers, S., Williamson, J., Stewart, C., and Murray-Smith,
R. FingerCloud: Uncertainty and Autonomy Handover in
Capacitive Sensing. Proc. CHI ’10. 577–580.

29. Rudchenko, D., Paek, T., and Badger, E. Text Text
Revolution: A Game That Improves Text Entry on Mobile
Touchscreen Keyboards. Proc. Pervasive ’11. 206–213.

30. Schwarz, J., Hudson, S., Mankoff, J., and Wilson, A.D. A
Framework for Robust and Flexible Handling of Inputs
with Uncertainty. Proc. UIST ’10. 47–56.

31. Shi, K., Irani, P., Gustafson, S., and Subramanian, S.
PressureFish : A Method to Improve Control of Discrete
Pressure-based Input. Proc. CHI ’08. 1295–1298.

32. Siek, K.A., Rogers, Y., and Connelly, K.H. Fat Finger
Worries: How Older and Younger Users Physically
Interact with PDAs. Proc. INTERACT’05. 267–280.

33. Srinivasan, M.A. and Chen, J.s. Human Performance in
Controlling Normal Forces of Contact with Rigid Objects.
Proc. ASME’93, vol. 49. 119–125.

34. Stewart, C., Rohs, M., Kratz, S., and Essl, G.
Characteristics of Pressure-Based Input for Mobile
Devices. Proc. CHI ’10. 801–810.

35. Subramanian, S., Aliakseyeu, D., and Lucero, A.
Multi-layer Interaction for Digital Tables. Proc. UIST ’06.
269–272.

36. Vertanen, K. and Kristensson, P.O. A Versatile Dataset for
Text Entry Evaluations Based on Genuine Mobile Emails.
Proc. MobileHCI ’11. 295–298.

37. Weir, D., Rogers, S., Murray-Smith, R., and Löchtefeld,
M. A User-Specific Machine Learning Approach for
Improving Touch Accuracy on Mobile Devices. Proc.
UIST ’12. 465–476.

38. Williamson, J. Continuous Uncertain Interaction. PhD
thesis, University of Glasgow, 2006.

	Abstract
	Introduction
	Related Work
	Text Entry Correction Approaches
	Offset Modelling
	Pressure Input
	Autonomy Handover

	The GPType System
	Language Model
	Touch Model
	Decoder

	Study 1: GP and Correction Strategies
	Study 2: Comparison with SwiftKey
	Participants
	Apparatus
	Procedure
	Design
	Results

	The Autocorrect Trap
	ForceType: Pressure as Certainty
	Correction Model

	Study 3: ForceType Evaluation
	Participants
	Apparatus
	Procedure
	Results
	Errors
	Entry Rate

	Discussion
	Conclusions
	Acknowledgments
	References

